Zhang Shuming,Li Jiaqi,Wang Hao,et al.Application of machine learningin predicting the outcomes and complications of radiotherapy[J].Chinese Journal of Radiological Medicine and Protection,2018,38(10):792-795
Application of machine learningin predicting the outcomes and complications of radiotherapy
Received:February 01, 2018  
DOI:10.3760/cma.j.issn.0254-5098.2018.10.015
KeyWords:Machine learning  Radiotherapy  Prognosis  Complication
FundProject:国家自然科学基金(81071237,81372420)
Author NameAffiliationE-mail
Zhang Shuming Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China  
Li Jiaqi Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China  
Wang Hao Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China  
Jiang Rongtao National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China  
Sui Jing National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China  
Shi Chengyu Memorial Sloan-Kettering Cancer Center, New York NY 10065, United States of America  
Yang Ruijie Department of Radiation Oncology, Peking University Third Hospital, Beijing 100191, China ruijyang@yahoo.com 
Hits: 3673
Download times: 1931
Abstract::
      Machine learning has developed rapidly in recent years. Using machine learning to predict the radiotherapy outcomes and complications can more accurately evaluate the patients' conditions and take appropriate treatment measures as soon as possible. The non-dose and dose related factors generated during radiotherapy are filtered and input into the algorithm model, then corresponding prediction result can be obtained. There are many algorithm models to predict survival rate, tumor control rate and radiotherapy complications, and the predicted result are more accurate now. However, the algorithm model also has various problems, and it needs constant exploration and improvement.
HTML  View Full Text  View/Add Comment  Download reader
Close

Copyright©    Editorial Office of Chinese Journal of Radiological Medicine and Protection    

Beijing ICP No. 05020547 -2

Address: 2 Xinkang Street, Dewai, Beijing 100088, China

Telephone:010-62389620; Email:cjrmp@cjrmp.sina.net

Technical Support:Beijing E-tiller CO.,LTD.

Visitors:12029137  On-line:0

v
Scan QR Code
&et=DCA5CABA83612A94E99FEAC3692F26F41916C485DAD8769045560EBC24DAB98F0A8EFC7452E5068EE9D5274B0681757382D6D3B61E5A654F308CA3881DBFF8B652D2356FE6FA076BF1A7C06602EAD2C69FBAF37951EF4E8CB5FADF0F7BD8BB66&pcid=A9DB1C13C87CE289EA38239A9433C9DC&cid=D4D466D60FDC1A5A&jid=5E4353813E091AB841B02B880782B82C&yid=EA357AD73C8E13BC&aid=BC4A7A631EF4C499EB6A3BA94ACFDA9A&vid=&iid=F3090AE9B60B7ED1&sid=1471D37D8144EBCF&eid=FC6FCA5A7559F1FB&fileno=20181015&flag=1&is_more=0"> var my_pcid="A9DB1C13C87CE289EA38239A9433C9DC"; var my_cid="D4D466D60FDC1A5A"; var my_jid="5E4353813E091AB841B02B880782B82C"; var my_yid="EA357AD73C8E13BC"; var my_aid="BC4A7A631EF4C499EB6A3BA94ACFDA9A";