张毅,游士虎,罗元强,等.基于蒙特卡罗模拟的9 C重离子衰变产物对细胞损伤的分析[J].中华放射医学与防护杂志,2024,44(5):361-366.Zhang Yi,You Shihu,Luo Yuanqiang,et al.Monte Carlo simulation-based analysis of cell damage by 9C-ion decay products[J].Chin J Radiol Med Prot,2024,44(5):361-366
基于蒙特卡罗模拟的9 C重离子衰变产物对细胞损伤的分析
Monte Carlo simulation-based analysis of cell damage by 9C-ion decay products
投稿时间:2023-08-17  
DOI:10.3760/cma.j.cn112271-20230817-00050
中文关键词:  9C重离子  缓发粒子  蒙特卡罗模拟  细胞生存率
英文关键词:9C-ion  Delayed particle  Monte-Carlo simulation  Cell surviving fraction
基金项目:贵州省抗癌协会科技计划项目([2023]15)
作者单位E-mail
张毅 贵州医科大学附属医院肿瘤科, 贵阳 550024
兰州大学核科学与技术学院, 兰州 730000 
 
游士虎 贵州医科大学附属医院肿瘤科, 贵阳 550024
贵州医科大学附属肿瘤医院放射物理技术室, 贵阳 550004 
 
罗元强 贵州医科大学附属肿瘤医院放射物理技术室, 贵阳 550004  
王志勇 贵州医科大学附属肿瘤医院放射物理技术室, 贵阳 550004  
许聪凤 贵州医科大学附属肿瘤医院放射物理技术室, 贵阳 550004  
金海洁 贵州医科大学附属医院肿瘤科, 贵阳 550024
贵州医科大学附属肿瘤医院放射物理技术室, 贵阳 550004 
 
张皓嘉 贵州医科大学附属医院肿瘤科, 贵阳 550024
贵州医科大学附属肿瘤医院放射物理技术室, 贵阳 550004 
 
洪卫 贵州医科大学附属医院肿瘤科, 贵阳 550024
贵州医科大学附属肿瘤医院放射物理技术室, 贵阳 550004 
 
甘家应 贵州医科大学附属医院肿瘤科, 贵阳 550024
贵州医科大学附属肿瘤医院放射物理技术室, 贵阳 550004 
 
胡银祥 贵州医科大学附属医院肿瘤科, 贵阳 550024
贵州医科大学附属肿瘤医院放射物理技术室, 贵阳 550004
贵州医科大学临床医学院肿瘤学教研室, 贵阳 550025 
hyx_wengan@163.com 
摘要点击次数: 631
全文下载次数: 271
中文摘要:
      目的 探究9C重离子治疗中因自身衰变产生的缓发粒子对细胞产生的辐射损伤和在单个V79中国仓鼠肺细胞模型上的微观剂量以及引起的生物学效应。方法 采用蒙特卡罗程序模拟多种能量(3~10 MeV)α粒子在细胞(细胞半径RC=10 μm,细胞核半径RN=5 μm)中的输运后细胞核内吸收剂量结果,并与医学内照射剂量(MIRD)方法S值(SN←N,SN←Cy,SN←CS)进行比较,证明该方法的可行性,最后使用蒙特卡罗方法模拟计算9C重离子分别在V79细胞模型表面、细胞质内以及细胞核3种位置处衰变生成的缓发粒子(α粒子和质子)在靶中输运能量沉积情况及细胞生存率。结果 蒙特卡罗模拟结果与MIRD方法S值进行比较,靶源组合从细胞核到细胞核SN←N值的差异为1.91%~4.95%,细胞质到细胞核SN←Cy为1.48%~5.11%,细胞表面到细胞核SN←CS差异为-1.99%~0.80%,证明蒙特卡罗计算值与MIRD方法S值吻合较好(差异值均< 6%)。当一个9C离子在V79细胞模型表面衰变产生次级粒子进入细胞,细胞核内平均吸收剂量为10-2Gy数量级,计算细胞生存率约为88%;衰变在细胞质中进行,计算细胞生存率约为80%;当碳离子直接进入细胞核中衰变,α粒子射程短并将大部分能量沉积在细胞中(细胞核内平均剂量0.1 Gy数量级),造成细胞损伤较大,细胞存活的概率约为53%。结论 9C离子自身衰变发射次级带电粒子,其中α粒子进入细胞核时对细胞造成的损伤较大,生物学效应明显。
英文摘要:
      Objective To explore the radiological damage to cells induced by the delayed particles of 9C-ions for heavy ion therapy, as well as the microdosimetric distribution and biological effects of these particles on a single model of V79 Chinese hamster lung cells. Methods The Monte Carlo program was employed to simulate the endonuclear absorbed doses of α particles with various energies (3-10 MeV) transported in cells (cell radius RC = 10 μm, nucleus radius RN = 5 μm). Then, the result were compared with the S values (SN←N, SN←Cy, and SN←CS) derived using the medical internal radiation dose (MIRD) method to demonstrate the feasibility of Monte Carlo simulations. Finally, the energy deposition of the delayed particles of 9C-ions generated at three sites (i.e., on the surface and in the cytoplasm and nucleus of the V79 cell model) during their transport in targets was simulated, and the result ing cell surviving fraction was analyzed. Results Monte Carlo and MIRD method yielded differences in S values of 1.91%-4.95% for SN←N (nucleus to nucleus), 1.48%-5.11% for SN←Cy (cytoplasm to nucleus), and -1.99% to 0.80% for SN←CS(surface to nucleus), indicating highly consistent S values derived using both method(differences < 6%). When a 9C-ion decayed on the surface of the V79 cell model and the produced secondary particles entered the cell, the average endonuclear absorbed dose was 10-2 Gy orders of magnitude, with a cell surviving fraction of about 88%. In the case where decay occurred in the cytoplasm, the cell surviving fraction was about 80%. However, when the 9C ion decayed in the nucleus, α particles had short ranges and deposited most of their energy in the cell (mean endonuclear absorbed dose: 0.1 Gy). In this case, severe cell damage was induced, with the cell surviving fraction reducing to about 53%. Conclusions 9C-ions emit secondary charged particles due to decay, among which α particles cause great damage to cells when entering the nucleus and trigger evident biological effects.
HTML  查看全文  查看/发表评论  下载PDF阅读器
关闭