马攀,李永宝,李明辉,牛传猛,谢欣,马敏,刘博,周付根,戴建荣.基于蒙特卡罗方法的脑转移瘤术中放疗施照器设计及剂量学评估[J].中华放射医学与防护杂志,2020,40(11):868-872
基于蒙特卡罗方法的脑转移瘤术中放疗施照器设计及剂量学评估
Design of a semi-spherical applicator for intraoperative radiotherapy with a linear accelerator and assessment of its dosemetric characteristics based on Monte Carlo simulation
投稿时间:2020-05-12  
DOI:10.3760/cma.j.issn.0254-5098.2020.11.010
中文关键词:  半球囊状施照器  电子束术中放疗  脑转移瘤
英文关键词:Semi-spherical applicator  Intraoperative electron beam radiotherapy  Intracranial metastatic tumor
基金项目:2020-09-30
作者单位E-mail
马攀 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院放疗科, 北京 100021  
李永宝 中山大学肿瘤防治中心放疗科, 广州 510060  
李明辉 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院放疗科, 北京 100021  
牛传猛 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院放疗科, 北京 100021  
谢欣 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院放疗科, 北京 100021  
马敏 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院放疗科, 北京 100021  
刘博 北京航空航天大学图像中心 100083  
周付根 北京航空航天大学图像中心 100083  
戴建荣 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院放疗科, 北京 100021 dai_jianrong@cicams.ac.cn 
摘要点击次数: 1911
全文下载次数: 1087
中文摘要:
      目的 设计适用脑转移瘤术中放疗的施照器并评估其剂量学特征。方法 施照器设计首先通过模拟计算电子束经过一系列不同厚度散射箔后的散射角和剂量率,确定散射箔厚度;其次,建立散射箔位于不同高度的位置评估模型,通过计算模型表面平均能量方差,确定散射箔位置;最后,建立调节层几何结构特征与施照器表面剂量之间的关系,确定调制器的内表面特征。使用蒙特卡罗(MC)EGSnrc/BEAMnrc和EGS4/DOSXYZ程序完成Mobetron加速器、位置评估模型、调节层、施照器建模和剂量学分析。结果 半球囊状施照器的限光筒直径为2.5 cm、筒壁厚0.5 cm,材料为0.2 cm厚水等效材料加0.3 cm厚不锈钢;散射箔厚度0.14 cm,材料为金属钨,位置高度为0.5 cm;调制器为月牙形,材料为水等效材料。该施照器能够使Mobetron 12 MeV的电子束产生半球面剂量分布,剂量率为160 cGy/min,治疗深度为0.85 cm。结论 采用MC模拟设计的适用于高能电子束的半球囊状施照器,能产生半球面剂量分布。
英文摘要:
      Objective To design a semi-spherical applicator for delivery of semi-spherical dose distributions and assess its dosemetric characteristics. Methods The applicator was designed in the following way. First, the scattering angle and dose rate of the electron beam having passed through a series of scattering foils of different thicknesses were calculated to determine the thickness of the scattering foil. And then, a series of location model was designed, and the variances of the mean electron energy on the surface of these models were calculated to determine the foil location. Finally, the relationship between the geometric characteristics of the layer and the surface dose on the applicator was established to design the modulator. Monte Carlo (MC) codes EGSnrc/BEAMnrc and EGS4/DOSXYZ were employed to model the head of the Mobetron, the location model, the layer, the semi-spherical applicator, and to calculate the dose distributions. Results A semi-spherical applicator was designed for electron beam of energy 12 MeV, which consisted of a 2.5 cm diametre cylindrical collimator with 0.5 cm thick wall made of 0.3 cm thick steel and 0.2 cm thick water equivalent material (WEM), a 0.14 cm-thick foil made of tansgen, and a 2.5 cm diametre hollow semi-sphere containing a crescent modulator made of WEM. The dose rate was about 160 cGy/min, and the depth of the 50% isodose curve was 0.85 cm. Conclutions We designed and performed a MC simulation of a semi-spherical applicator to deliver a semi-spherical dose distribution from a high energy electron beam.
HTML  查看全文  查看/发表评论  下载PDF阅读器
关闭