吴先想,牛振洋,费振乐,刘苓苓,崔相利,魏敏,王磊.呼吸运动状态对动态调强放疗剂量分布影响的研究[J].中华放射医学与防护杂志,2019,39(3):197-201
呼吸运动状态对动态调强放疗剂量分布影响的研究
The effect of respiratory motion states on dynamic IMRT dose distribution
投稿时间:2018-09-28  
DOI:10.3760/cma.j.issn.0254-5098.2019.03.007
中文关键词:  呼吸运动  靶区体积  γ通过率  剂量分布  动态调强放疗
英文关键词:Respiratory motor  Target volume  γ-passing rate  Dose distribution  Dynamic intensitymodulated radiation therapy
基金项目:安徽省公益性技术应用研究联动计划项目(1704f0804051)
作者单位E-mail
吴先想 安徽医科大学生命科学学院生物医学工程系, 合肥 230032  
牛振洋 中国人民解放军联勤保障部队第901医院放疗科, 合肥 230031  
费振乐 安徽医科大学生命科学学院生物医学工程系, 合肥 230032 feizhenle@21.cn.com 
刘苓苓 中国科学院合肥肿瘤医院, 合肥 230031  
崔相利 中国科学院合肥肿瘤医院, 合肥 230031  
魏敏 安徽医科大学生命科学学院生物医学工程系, 合肥 230032  
王磊 中国人民解放军联勤保障部队第901医院放疗科, 合肥 230031  
摘要点击次数: 2523
全文下载次数: 1297
中文摘要:
      目的 探讨不同幅度、周期、方向的呼吸运动对动态调强放疗(IMRT)计划中靶区剂量分布的影响。方法 选取30例肺癌病例,按靶区体积大小分为A(72.0~200.2 cm3)、B(271.7~380.0 cm3)、C(498.9~684.9 cm3)3组,每组10例,平均体积分别为151.5、327.1和583.3 cm3。使用呼吸运动模拟平台带动含二维电离室矩阵的模体沿枪靶方向运动。分别转动准直器至0°和90°,在不同呼吸运动幅度(0、4、8、12和15 mm)与周期(3、4和5 s)下,采集模体等中心层面剂量。其中周期为4 s测量5次,以绝对剂量及γ通过率(3 mm/3%)为指标,分析采集剂量与治疗计划系统(TPS)输出的剂量分布差异。结果 在两个方向上,呼吸运动降低了靶区边缘内侧剂量,提高了靶区边缘外侧剂量。呼吸运动周期之间的γ通过率差异最大达3.54%(t=2.301,P<0.05)。当呼吸运动幅度超过8 mm时,γ通过率<90%,且随幅度增大而减小。静态与呼吸运动之间γ通过率的差值和靶区体积呈负相关,A、B、C 3组的平均γ通过率依次增大。5次叠加剂量的γ通过率高于单次剂量平均γ通过率,且差异有统计学意义(t=-9.36~-5.95,P<0.05)。结论 动态IMRT靶区剂量分布主要受呼吸运动幅度及自身体积影响,部分幅度下呼吸运动周期对剂量分布有影响。多次剂量实施后,可消除部分单次剂量实施误差。医师需要根据呼吸运动幅度对靶区进行合理外扩,同时优化呼吸运动方向上靶区边缘组织受量。对于靶区体积过小以及呼吸运动幅度过大的患者,应采取呼吸管理技术提高靶区剂量实施的精准性。
英文摘要:
      Objective To investigate the effect of respiratory movement of different amplitude, period and direction on the dose distribution of target area in dynamic intensity modulated radiation therapy. Methods A total of 30 cases of lung cancer were selected and divided into three groups according to the volume size of the target area, including groups A (72.0-200.2 cm3), B (271.7-380.0 cm3) and C (498.9-684.9 cm3). The average volume was 151.5, 327.1 and 583.3 cm3, respectively. Breathing motion simulation platform was used to drive the mode body with two-dimensional ionization chamber matrix along the Gun-Target direction, then turn the collimator to 0° and 90°, respectively. The doses were collected at the central level in different amplitudes of 0, 4, 8, 12 and 15 mm, periodic respiratory movement at the intervals of 3, 4 and 5 s and respiratory motion measurement with a cycle of 4 s 5 times. The difference of dose distribution between the collected dose and TPS output was analyzed by taking the absolute dose and γ-passing rate (3 mm/3%) as indicators. Results In the two-sided upward, respiratory movement reduced the dose at the medial edge of the target area and increased the dose at the lateral edge of the target area. The difference of γ-passing rate between respiration cycle was up to 3.54% (t=2.301, P<0.05), and when the respiration movement was more than 8 mm, the γ-passing rate was less than 90% and decreased with the increase of amplitude. The difference of γ-passing rate between static and respiratory motion was negatively correlated with the volume of target area, and the average γ-passing rate of A, B and C three groups increased gradually. The γ-passing rate of 5 composited dose was higher than that of single dose, and the difference was statistically sigificant(t=-9.36--5.95, P<0.05). Conclusions The dose distribution of dynamic IMRT target area is mainly influenced by respiration range and its own volume, and the respiration cycle has an effect on dose distribution under partial amplitude. After implementing the multiple doses, some single dose implementation errors can be eliminated. Physicians need to expand the target area reasonably according to the range of respiratory movement, and optimize the amount of marginal tissue in the target area in the direction of respiratory movement. For patients with small target volume and large respiratory movement, respiratory management technology should be adopted to improve the accuracy of target dose implementation.
HTML  查看全文  查看/发表评论  下载PDF阅读器
关闭