傅旖,马辰莺,李书月,等.局部进展期直肠癌全程新辅助治疗相关放射性肠炎的预测模型研究[J].中华放射医学与防护杂志,2025,45(8):757-765.Fu Yi,Ma Chenying,Li Shuyue,et al.Prediction model of radiation enteritis under the total neoadjuvant therapy for locally advanced rectal cancer[J].Chin J Radiol Med Prot,2025,45(8):757-765 |
局部进展期直肠癌全程新辅助治疗相关放射性肠炎的预测模型研究 |
Prediction model of radiation enteritis under the total neoadjuvant therapy for locally advanced rectal cancer |
投稿时间:2025-02-09 |
DOI:10.3760/cma.j.cn112271-20250209-00046 |
中文关键词: 直肠肿瘤 放射治疗 急性放射性肠炎 营养指标 全程新辅助治疗 |
英文关键词:Rectal tumor Radiotherapy Acute radiation enteritis Nutritional indicators Total neoadjuvant therapy |
基金项目:国家自然科学基金(81602792);江苏省高等学校基础科学(自然科学)研究面上项目(23KJB310023);江苏省妇幼保健科研项目(F202210);江苏省医学重点学科(ZDXK202235);放射医学与辐射防护国家重点实验室资助项目(GZK1202101);苏州市科技项目(SLT201920);苏州大学附属第一医院临床诊疗技术创新项目青年特色技术项目(2100201) |
|
摘要点击次数: 364 |
全文下载次数: 184 |
中文摘要: |
目的 分析局部进展期直肠癌在全程新辅助治疗期间发生严重急性放射性肠炎的相关影响因素。通过研究放射性肠炎与多维度因素间的效应关系,筛选对其发生发展具有预测价值的特异性指标。方法 纳入2020年1月至2023年9月在苏州大学附属第一医院行全称新辅助治疗的92例直肠腺癌患者。收集患者临床营养指标、血液参数动态变化、系统性炎症指标、不良反应发生情况。采用logistic回归分析筛选与放射性肠炎发生相关的危险因素,并基于独立危险因素构建风险预测的列线图模型。结果 单因素分析显示,部分营养指标、肿瘤局部测量数据、实验室指标等因素与严重急性放射性肠炎的发生显著相关。多因素回归分析表明,治疗前后白蛋白降幅>26.5%(OR=5.010,95%CI: 1.766~14.154,P = 0.010)、肛门坠胀感评级为1~3级(OR = 3.639,95%CI: 1.425~9.300,P = 0.024)以及疾病活动指数评分升高(每增加1分OR约为7.683,95%CI: 1.105~53.410,P = 0.039)是严重急性放射性肠炎发生的独立危险因素。据此构建的预测模型预测效率较高(AUC=0.841,95%CI: 0.749~0.934)。结论 由白蛋白降幅、肛门坠胀感评级和疾病活动指数评分三项因素构建的列线图模型能够准确、简便且低成本地预测局部进展期直肠癌患者全程新辅助治疗过程中发生放射性肠炎的风险。该模型有助于临床提前识别高危患者,为个体化调整放疗方案和加强营养干预提供依据。 |
英文摘要: |
Objective To analyze relevant factors influencing severe acute radiation enteritis (SARE) during total neoadjuvant therapy (TNT) for locally advanced rectal cancer (LARC). To identify specific prediction indicators of the occurrence and progression of radiation enteritis by investigating the effect relationships between radiation enteritis and multidimensional factors. Methods A total of 92 patients with rectal adenocarcinoma who received total neoadjuvant therapy at the First Affiliated Hospital of Soochow University from January 2020 to September 2023 were enrolled in this study. Their relevant information was collected, encompassing clinical nutritional indicators, dynamic changes in hematological parameters, systemic inflammatory indicators, and the occurrence of adverse reactions. Then, risk factors associated with radiation enteritis were determined using logistic regression analysis. Based on independent risk factors, a nomogram model for risk prediction was constructed. Results Univariate analysis revealed significant correlations of the SARE occurrence with certain nutritional indicators, local tumor measurement data, and laboratory parameters. Multivariate regression analysis further identified the independent risk factors for SARE occurrence, including albumin reduction >26.5% before vs. after treatment (OR = 5.010, 95% CI: 1.766-14.154, P = 0.010), rectual tenesmus rating of Grade 1-3 (OR = 3.639, 95%CI: 1.425-9.300, P = 0.024), and elevated disease activity index (DAI) score (OR ≈ 7.683 per 1-point increase, 95%CI: 1.105-53.410, P = 0.039). The prediction model constructed based on these factors demonstrated high prediction efficiency (AUC = 0.841; 95%CI: 0.749-0.934). Conclusions The nomogram model constructed using albumin reduction, rectal tenesmus rating, and DAI score can provide accurate, simple, and low-cost risk prediction of radiation enteritis during TNT for LARC patients. This model facilitates the early clinical identification of high-risk patients, providing a basis for implementing personalized adjustments to radiotherapy regimens and enhancing nutritional interventions. |
HTML 查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|