祁浩,杜翔,杨春勇,等.江苏省31台医用加速器输出剂量荧光玻璃剂量计核查研究[J].中华放射医学与防护杂志,2023,43(10):784-790.Qi Hao,Du Xiang,Yang Chunyong,et al.Dosimetry audits research for 31 medical accelerators by using radiophoto luminescent glass dosimeter in Jiangsu province[J].Chin J Radiol Med Prot,2023,43(10):784-790
江苏省31台医用加速器输出剂量荧光玻璃剂量计核查研究
Dosimetry audits research for 31 medical accelerators by using radiophoto luminescent glass dosimeter in Jiangsu province
投稿时间:2023-03-09  
DOI:10.3760/cma.j.cn112271-20230309-00066
中文关键词:  荧光玻璃剂量计  质量控制  放疗剂量  核查
英文关键词:Radiophoto luminescent dosimeter  Quality control  Radiotherapy dosimetry  Audit
基金项目:江苏省医学重点学科(ZDXK202249)
作者单位E-mail
祁浩 南京医科大学公共卫生学院, 南京 211166  
杜翔 江苏省疾病预防控制中心放射防护所, 南京 210009  
杨春勇 江苏省疾病预防控制中心放射防护所, 南京 210009  
李圣日 江苏省疾病预防控制中心放射防护所, 南京 210009  
王进 南京医科大学公共卫生学院, 南京 211166
江苏省疾病预防控制中心放射防护所, 南京 210009 
jinwang@jscdc.cn 
摘要点击次数: 969
全文下载次数: 470
中文摘要:
      目的 使用荧光玻璃剂量计(radiophoto luminescent glass dosimeter, RPLGD)对开展放疗的医疗机构的医用加速器输出剂量进行核查,并评估加速器放疗剂量的准确性和RPLGD作为剂量核查工具的实效。方法 首先采用立意抽样法在江苏省抽取了放疗机构人员配合度较好及医用加速器治疗患者数量较多的3个地级市,再采用简单随机抽样法从所选3个市的全部放疗机构中抽取了31家放疗机构,最后每家各抽取1台医用加速器开展剂量核查。剂量核查采用RPLGD结合30 cm × 30 cm × 30 cm标准照射水箱,在照射野10 cm × 10 cm、源距离模体表面距离为100 cm、水下10 cm中心处,给予剂量计2 Gy吸收剂量照射。照射完成后测量并计算剂量偏差,判断其是否在±5%的合格水平内,并运用非参数检验方法分析不同厂家、安装年代、设区市加速器的偏差差异。结果 31家机构的31台医用加速器的相对偏差范围为 -16.9% ~2.0%,其中有28台合格,占90.3%。随后对剂量偏差唯一超过±10%的加速器进行跟踪复查,该机器复查的剂量偏差也在±5%内。对剂量偏差超过±5%的两台加速器使用电离室复测,两台机器复测的剂量偏差在±3%内。此外,非参数检验结果显示不同厂家、安装年代、设区市加速器的剂量偏差结果差异均无统计学意义(P>0.05)。结论 江苏省此次核查加速器的剂量偏差水平与以往结果基本一致,但与发达国家水平还存在差距。RPLGD作为输出剂量核查工具是可行的,后续可扩大RPLGD核查覆盖面,进一步通过剂量核查工作推动放射治疗质量发展。
英文摘要:
      Objective To perform dosimetric audits on medical accelerators in radiotherapy institutions in Jiangsu province by using a radiophoto luminescent glass dosimeter (RPLGD) and to evaluate both the accuracy of radiotherapy doses and the effectiveness of RPLGD as an auditing tool. Methods Firstly, the purposive sampling method was used to select three prefecture-level cities in Jiangsu province with good cooperation between radiotherapy institutions and a large number of patients treated by medical accelerators. Secondly, a simple random sampling method was used to select 31 radiotherapy institutions from all radiotherapy institutions in the selected three cities. Finally, one medical accelerator was selected from each institution for dose audit. A dose audit was performed by using RPLGD combined with a 30 cm × 30 cm × 30 cm standard phantom. The dosimeter was placed 10 cm underwater in the center of a 10 cm × 10 cm field with a 100 cm source skin distance. The dosimeter was irradiated with absorbed dose of 2 Gy. After the completion of irradiation, the dosimeter was read by the reader and the deviation was calculated. The acceptance level of the present research was ±5%. A non-parametric test was used to test the significance of differences between different manufacturers, installation years, and geographic distribution. Results The dose deviation of 31 accelerators was from -16.9% to 2.0%. Of these, 28 accelerators pass the audit with pass rate of 90.3%. A follow-up audit was conducted on the only accelerator whose dose deviation exceeds±10%, also with discrepancy within ±5%. Two accelerators with a dose deviation larger than ±5% were re-measured using ionization chambers, both with dose deviation within ±3%. The non-parametric test result showed that there were no significant statistical differences in dose deviation for accelerators with different manufacturers, installation years, and geographic distribution(P>0.05). Conclusions The levels of dose deviation for accelerators in Jiangsu province are consistent with those in the previous studies. However, there is still a difference with developed countries. RPLGD is feasible as a dose audit tool. The coverage of the RPLGD audit should be expanded to promote the quality of the radiotherapy through dose aduit.
HTML  查看全文  查看/发表评论  下载PDF阅读器
关闭