孙鸿飞,倪昕晔,杨建华.基于深度学习方法的伪CT图像合成技术研究及在放疗中的应用进展[J].中华放射医学与防护杂志,2021,41(3):222-228.Sun Hongfei,Ni Xinye,Yang Jianhua.Research on pseudo CT image synthesis technology based on deep learning method and its application in radiotherapy[J].Chin J Radiol Med Prot,2021,41(3):222-228
基于深度学习方法的伪CT图像合成技术研究及在放疗中的应用进展
Research on pseudo CT image synthesis technology based on deep learning method and its application in radiotherapy
投稿时间:2020-10-21  
DOI:10.3760/cma.j.issn.0254-5098.2021.03.012
中文关键词:  深度学习  伪CT  图像引导放疗
英文关键词:Deep learning  Pseudo CT  Image guided radiotherapy
基金项目:
作者单位E-mail
孙鸿飞 西北工业大学自动化学院, 西安 710072  
倪昕晔 南京医科大学附属常州第二人民医院放疗科 南京医科大学医学物理研究中心 213003 nxy@njmu.edu.cn 
杨建华 西北工业大学自动化学院, 西安 710072  
摘要点击次数: 3534
全文下载次数: 2008
中文摘要:
      随着医学图像合成任务复杂度的提高和对临床放疗精度的需求,深度学习算法在伪CT图像合成与分析中的角色越发重要。本文根据图像的模态种类对基于深度学习方法下的伪CT图像合成技术进行归类与分析,并介绍其在放疗应用中的最新进展。
英文摘要:
      With the improvement of the complexity of medical image synthesis and the demand for the accuracy of clinical radiotherapy, deep learning algorithm plays an increasingly important role in pseudo CT image synthesis and analysis. This paper classifies and analyzes the pseudo CT image synthesis technology based on deep learning method in terms of the types of image modes, and describes the ongoing application in radiotherapy.
HTML  查看全文  查看/发表评论  下载PDF阅读器
关闭