罗素明,何志坚,袁继龙,岳保荣,尉可道.热释光剂量计测量125I粒子源植入中职业人员剂量方法研究[J].中华放射医学与防护杂志,2011,31(4):398-403
热释光剂量计测量125I粒子源植入中职业人员剂量方法研究
Development of measurement method using TLD for workers occupation personally exposed to 125I seed source in the implant
投稿时间:2010-03-28  
DOI:10.3760/cma.j.issn.0254-5098.2011.04.006
中文关键词:  TLD  125I粒子源植入  职业人员  吸收剂量  有效剂量
英文关键词:TLD   125I seed source implantation  Occupational exposure  Average absorbed dose  Effective dose
基金项目:国家科技支撑计划(2006BAI06B03)
作者单位E-mail
罗素明 100088 北京,中国疾病预防控制中心辐射防护与核安全医学所  
何志坚 100088 北京,中国疾病预防控制中心辐射防护与核安全医学所  
袁继龙 100088 北京,中国疾病预防控制中心辐射防护与核安全医学所  
岳保荣 100088 北京,中国疾病预防控制中心辐射防护与核安全医学所 bryue@163.com 
尉可道 100088 北京,中国疾病预防控制中心辐射防护与核安全医学所  
摘要点击次数: 3920
全文下载次数: 2259
中文摘要:
      目的 研究用热释光剂量计(TLD)测量并计算125I粒子源植入中职业人员器官和组织接受的吸收剂量及有效剂量方法。方法 60Co γ射线开展TLD稳定性等相关性能实验。用125I粒子源照射一组TLD片,建立空气比释动能标准剂量曲线。将TLD片分别贴在粒子源植入过程中职业人员铅衣内外甲状腺等13个部位,测量平均吸收剂量,计算器官和组织的吸收剂量和有效剂量。结果 3例前列腺癌粒子源植入术中,职业人员铅衣外器官和组织吸收剂量0.02~3.80 μGy,有效剂量0.06~1.81 μSv;铅衣内最高吸收剂量2.35 μGy,有效剂量0.02 μSv,屏蔽65.9%以上γ射线。3例脑癌中,职业人员铅衣外器官和组织吸收剂量0.23~11.31 μGy,有效剂量0.88~4.07 μSv;铅衣内最高吸收剂量2.22 μGy,有效剂量0.09 μSv,屏蔽54.5%以上射线。3例肺癌中,职业人员铅衣外器官和组织吸收剂量0.03~14.78 μGy,有效剂量0.35~7.59 μSv;铅衣内最高吸收剂量4.09 μGy,有效剂量0.22 μSv,屏蔽58.4%以上射线。2例纵隔癌中,职业人员铅衣外器官和组织的吸收剂量为0.06~74.91 μGy,有效剂量0.83~17.96 μSv;铅衣内最高吸收剂量10.29 μGy,有效剂量0.50 μSv,屏蔽85%以上射线。1例卵巢癌中,职业人员铅衣外器官和组织吸收剂量0.09~14.29 μGy,有效剂量2.40~4.50 μSv;铅衣内最高吸收剂量7.77 μGy,有效剂量0.12 μSv,屏蔽33.4%以上射线。植入1例眼睛癌中,职业人员铅衣外器官和组织吸收剂量为2.20~39.84 μGy,有效剂量4.48~10.06 μSv;铅衣内最高吸收剂量5.19 μGy,有效剂量0.16 μSv,屏蔽54.6%以上射线。结论 用TLD监测粒子源植入中职业人员剂量的方法简单易行,是保护近距离植入粒子源治疗中医务人员健康的有效措施。
英文摘要:
      Objective To explore the method for measuring and calculating both absorbed dose and effective dose received in organ and tissues of occupational workers by using TLDs for the implantation of 125I seed sources. Methods The experiments with 60Co γ-rays were carried out for the stability. A group of TLD chips was exposed to 125I seed sources to establish standard dose curve for air kerma. During the 125I seed implantation, the TLD chips were pasted to 13 locations like thyroid inside and outside the lead aprons worn by occupational workers to measure average absorbed dose and calculate the absorbed doses and effectives to organs and tissues. Results For 3 cases of prostate cancers with implantation of 125I seeds, the worker's organs and tissues received the absorbed dose 0.02-3.80 μGy and effective dose 0.06-1.81 μSv outside lead aprons and the highest absorbed dose 2.35 μGy and effective 0.02 μSv inside lead aprons, respectively, with more than 65.9% of rays shielded. For 3 cases of brain cancers with implantation of 125I seeds, the workers received the absorbed dose 0.23-11.31 μGy and effective dose 0.88-4.07 μSv outside lead aprons and the highest absorbed dose 2.22 μGy and effective dose 0.09 μSv inside lead aprons, respectively, with more than 54.5% of rays shielded. For 3 cases of lung cancers with implantation of 125I seeds, the workers received the absorbed dose 0.03-14.78 μGy and effective dose 0.35-7.59 μSv outside lead aprons and the highest absorbed dose 4.09 μGy and effective 0.22 μSv inside lead aprons, respectively, with more than 58.4% of rays shielded. For 2 cases of mediastinum cancers with implantation of 125I seeds, the workers received the absorbed dose 0.06-74.91 μGy and effective dose 0.83-17.96 μSv outside lead aprons and the highest absorbed dose 10.29 μGy and effective 0.5 μSv inside lead aprons, respectively, with more than 85% of rays shielded. For one case of ovary cancer with implantation of 125I seeds, the worker received the absorbed dose 0.09-14.29 μGy and effective dose 2.40-4.50 μSv outside lead aprons and the highest absorbed dose 7.77 μGy and effective 0.12 μSv inside lead aprons, respectively, with more than 34% of rays shielded. For one case of eye cancer with implantation of 125I seeds, the workers received the absorbed dose 2.2-39.84 μGy and effective dose 4.48-10.06 μSv outside aprons and the highest absorbed dose 5.19 μGy and effective 0.16 μSv inside aprons, respectively, with more than 54.6 % of rays shielded. Conclusions The method of using TLDs to measure the doses to the occupational workers in the course of the implantation of 125I seed sources is simple and easy to operate. It would be an effective approach to protecting medical workers in the case of brachytherapy.
HTML  查看全文  查看/发表评论  下载PDF阅读器
关闭