齐雪松,吕慧敏,王春燕,等.γ射线诱发人外周血淋巴细胞T细胞受体基因突变剂量-效应和时间-效应关系[J].中华放射医学与防护杂志,2011,31(3):286-289.QI Xue-song,LV Hui-min,WANG Chun-yan,et al.Dose-effect relationship and time-effect relationship of T cell receptor gene mutation induced by γ-rays in human lymphocytes of peripheral blood[J].Chin J Radiol Med Prot,2011,31(3):286-289 |
γ射线诱发人外周血淋巴细胞T细胞受体基因突变剂量-效应和时间-效应关系 |
Dose-effect relationship and time-effect relationship of T cell receptor gene mutation induced by γ-rays in human lymphocytes of peripheral blood |
投稿时间:2010-10-21 |
DOI:10.3760/cma.j.issn.0254-5098.2011.03.010 |
中文关键词: γ射线 T细胞受体 剂量-效应关系 时间-效应关系 生物剂量计 |
英文关键词:γ-rays T cell receptor (TCR) Dose-effect relationship Time-effect relationship Biological dosimeter |
基金项目:卫生行业科研专项(200802018) |
|
摘要点击次数: 3614 |
全文下载次数: 2635 |
中文摘要: |
目的 初步建立T细胞受体(TCR)突变频率的剂量-效应和时间-效应模型,为探讨TCR作为估算辐射生物剂量计提供依据。 方法 将10名健康成年人的外周血淋巴细胞分成两组, 第1组4人(男性)的外周血淋巴细胞分别给予0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0和5.0 Gy γ射线照射,用于拟合剂量-效应曲线,第2组6人(男女各半)的外周血淋巴细胞给予2 Gy γ射线照射,用于拟合时间-效应曲线。用流式细胞仪进行计数检测,计算TCR基因突变频率。结果 γ射线照射诱发TCR MF的辐射剂量-效应曲线,拟合最佳的模型为二次方程模型:TCR MF=92.14+22.61 D 2(R2adj=0.65);γ射线照射诱发TCR MF的辐射时间-效应曲线,拟合最佳的模型为二次多项式方程模型:TCR MF=3.74+743.66 T +308.64 T 2(R2adj=0.79)。 结论 0~5 Gy范围内TCR基因突变频率与辐射剂量存在剂量-效应关系。照后4 d内TCR基因突变频率随时间的延长而继续增加,存在时间-效应关系。 |
英文摘要: |
Objective To study the dose-effect relationship and time-effect relationship of T cell receptor (TCR) gene mutation induced by γ-rays in lymphocytes of human peripheral blood. Methods Samples of peripheral blood were collected from 10 healthy adults and lymphocytes were separated. Four samples from males used to fit time-effect curve were exposed to γ-rays at the doses of 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 5.0 Gy, respectively, and 6 samples from 3 males and 3 females used to fit dose-effect curves were exposed to γ-rays of the dose of 2 Gy. Flow cytometry was used to detect the mutation frequency of TCR gene (TCR MF). Radiation dose-effect curves and time-effect curves were fitted and optimal mathematical models were selected respectively. Results The optimal mathematical model for radiation dose-effect was quadratic equation model: TCR MF=92.14+22.61 D 2(R2adj=0.65). The optimal mathematical model for radiation time-effect was quadratic polynomial equation model: TCR MF=3.74+743.66 T +308.64 T 2(R2adj=0.79). Conclusions TCR MF is increased as the γ-ray irradiation dose increases within the range of 0-5 Gy, and TCR MF is increased with the lapse of time within the range of 4 days after γ-ray radiation. |
HTML 查看全文 查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|