保乳术后仰卧位与俯卧位部分乳腺外照射靶区体积及剂量学比较

于婷 王磊 徐敏 孙涛 邵倩 张英杰 刘希军 李奉祥 李建彬
250022 济南大学 山东省医学科学院医学与生命科学学院 (于婷); 250117 济南, 山东大学附属山东省肿瘤医院放射科 (王磊、徐敏、邵倩、张英杰、刘希军、李奉祥、李建彬), 物理室 (孙涛)
通信作者: 李建彬, Email: lijianbin@msn.com
DOI: 10.3760/cma.j.issn.0254-5098.2018.02.003

【摘要】目的 探讨保乳术后基于仰卧位与俯卧位实施部分乳腺外照射 (EB-PBI) 时靶区体积及剂量学差异。方法 2016 年 7 月至 2017 年 4 月, 30 例保乳术后拟行 EB-PBI 的患者在自由呼吸状态下序贯完成仰卧位及俯卧位模拟定位 3D-CT 扫描。由同一画者分别在两种体位 CT 图像上基于术前金属夹完成瘤床 (TB) 勾画和临床靶区 (CTV) 及计划靶区 (PTV) 的构建, 并勾画肺脏、心脏和双侧乳腺作为危及器官 (OAR)。分别制定三维适形 EB-PBI 治疗计划, 比较两种体位靶区间及 OAR 剂量学体积差异。结果 基于仰卧位、俯卧位勾画的 TB 分别为 14.40 和 14.10 cm³, CTV 分别为 57.35 和 62.60 cm³, PTV 分别为 108.85 和 113.70 cm³, 俯卧位 CTV 及 PTV 均大于仰卧位 (Z = -3.01, -2.87, P < 0.05), 而不同体位间 TB 差异则无统计学意义 (P > 0.05)。靶区均质性指数 (HI) 分别为 0.09 和 0.10, 俯卧位大于仰卧位 (Z = -3.137, P < 0.05), 靶区适形指数 (CI) 分别为 0.89 和 0.78, 仰卧位小于俯卧位 (Z = -3.034, P < 0.05)。两种体位 EB-PBI 计划中, 心脏平均受照剂量 (Dmean) 分别为 0.34 和 1.19 Gy, 俯卧位大于仰卧位 (Z = -4.12, P < 0.05); 患侧肺 Dmean 分别为 1.12 和 1.59 Gy, 俯卧位小于仰卧位 (Z = -2.18, P < 0.05); 双侧乳腺 Dmean 分别为 10.01 和 10.40 Gy, 差异无统计学意义 (P > 0.05)。结论 对于中国乳腺癌保乳患者而言, 在自由呼吸状态下基于仰卧位实施三维适形 EB-PBI 是可行的。在降低患侧肺受照剂量以及提高靶区适形指数方面, 俯卧位较仰卧位有明显优势。

【关键词】保乳术后; 外照射; 体位; 靶区; 剂量学

基金项目: 国家重点研发计划项目(2016YFC0904700); 国家自然科学基金(81703038); 山东省重点研发计划项目(2017GSF18102); 山东省自然科学基金(ZR2017PH006)

A comparison of the target volume and dosimetric variance between supine and prone positions for external-beam partial breast irradiation after breast-conserving surgery Yu Ting, Wang Wei, Xu Min, Sun Tao, Shao Qian, Zhang Yingjie, Liu Xijun, Li Fengxiang, Li Jianbin
School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250022, China (Yu T); Department of Radiation Oncology (Wang W, Xu M, Shao Q, Zhang YJ, Liu XJ, Li FX, Li JB), Department of Radiophysics (Sun T), Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, China
Corresponding author: Li Jianbin, Email: lijianbin@msn.com

【Abstract】Objective To investigate the difference of target volumes and dosimetric parameters between supine and prone positions for external-beam partial breast irradiation (EB-PBI) after breast-conserving surgery (BCS). Methods Thirty breast cancer patients with T1a~T3bN0M0 stage who underwent three-dimensional conformal radiation therapy (3D-CRT) EB-PBI after BCS were enrolled from July 2016 to April 2017. Supine and prone scan sets were acquired during free breathing for all patients. Target volumes and organs at risk (OARs) including heart, ipsilateral lung and bilateral breast were contoured by the same radiation oncologist. The tumor bed (TB) was determined based on surgical clips. The clinical target volume (CTV) consisted of the TB plus 1.0 cm margin and the planning target volume (PTV) was CTV plus 0.5 cm. Dosimetric parameters for target volumes and OARs were compared between supine and...
保乳治疗是早期乳腺癌治疗的首选，而术后放疗则是保乳治疗的重要组成部分，不但可以显著减少术后复发率，同时亦可有效降低死亡率【1】。尽管仰卧位仍为保乳术后放疗的常用体位，但俯卧位的广泛应用广泛，特别是对下垂型乳腺患者，选择俯卧位似乎已成常规，而且研究发现俯卧位放疗在减少心肺受照体积以及增加剂量均匀性等方面均优于仰卧位放疗【22】。然而，现有的关于乳腺癌保乳术后不同体位放疗的对比研究大多是针对全乳腺照射(whole breast irradiation, WBI)的，但近年来部分乳腺照射(partial breast irradiation, PBI)已成为早期低危患者保乳术后可选放疗方式，而部分乳腺外照射(external-beam partial breast irradiation, EB-PBI)则是在 PBI 的主要实现方式之一，并且基于俯卧位实施 EB-PBI 的研究已有报道，但俯卧位与仰卧位实施 EB-PBI 的比较优势并不明确。为此，拟通过本研究探讨自由呼吸状态下仰卧位与俯卧位实施 EB-PBI 时靶区及危及器官(organ at risk, OAR)的剂量体积差异。

资料与方法

1. 临床资料: 选择 2016 年 7 月至 2017 年 4 月入住本院拟行 EB-PBI 的保乳术后早期乳腺癌患者 30 例。入组条件: 保乳术后符合 EB-PBI 条件的患者；原发肿瘤切除方式为局部肿瘤扩大切除且无术腔填充；术腔边缘标记金属夹 ≥ 5 个；上臂外展上举自如；无慢性肺疾病, 肺通气功能正常；自愿接受俯卧位 3D-CT 扫描，并签署知情同意书；放疗定位时, 术腔中无可见血清肿。原发肿瘤位于左乳腺者 14 例, 右乳腺者 16 例, 外上象限 17 例, 外下象限 3 例, 内下象限 3 例, 内上象限 5 例, 中央区 2 例。全部患者原发肿瘤手术方式均为局部肿瘤扩大切除术且术腔各边界放置金属夹, 腔内放置方式为前螺旋扫描, 尽量避开心肺、骨、重要血管等结构。入组患者的手术分期为 pT1N0M0。

2. CT 模拟定位图像采集: 所有患者均分别采用仰卧位及俯卧位乳腺托架固定。①仰卧位模拟定位: 患者仰卧于附有垫凳的乳腺托架上, 双侧上肢外展上举以保证患者体位准确, 激光灯准直并置于体中线和左右体侧分别进行数字标记, 分别于体中线及两体侧皮肤上激光十字标记处放置体表金属标记。②俯卧位模拟定位: 患者俯卧于附有垫凳的俯卧位专用肿瘤托架 (CIVCO Horizon™俯卧位乳腺托架) 上, 头部面朝下置于 C 枕上, 双手支撑于胸前, 患侧乳腺悬垂于治疗孔中, 由医师调整键侧挡板位置, 使健侧乳腺尽可能远离患侧, 激光灯准直并位于左右体侧进行标记。3D-CT 扫描的范围从环甲膜至肺下缘下 5 cm, 层厚 3 mm。将图像传输至瓦里安 Eclipse 13.5 治疗计划系统。

3. 靶区勾画与定义: 完全患者的靶区勾画均由同一名从事乳腺癌放疗的高年资医生完成。分别在仰卧位及俯卧位定位 CT 图像上基于金属夹勾画靶区 (tumor bed, TB)。TB 边界外扩 10 mm 作为临床靶区 (clinical target volume, CTV)。前界修回至皮下 5 mm，后界修回至胸壁与胸肌交界。CTV 边界外扩 5 mm 作为为计划靶区 (planning target volume, PTV)。前界修回至皮下 5 mm，后界修回至胸壁与肺交界处。勾画双侧乳腺、患侧肺及心脏，作为 OAR。
仰卧位与俯卧位 TB 的勾画原则及 CTV 和 PTV 的构建原则完全一致。

4. 放疗计划制定：在 Eclipse 治疗计划系统中，分别在仰卧位和俯卧位定位 3D-CT 图像上，基于已完成勾画和构建的靶区设计三维适形放疗（3D-CRT）EB-PBI 治疗计划。仰、俯卧位 EB-PBI 计划均采用 6 MV X 射线，处方剂量为 3.4 Gy x 10 次，剂量计算均选用各向异性解析（analytical anisotropic algorithm, AAA）算法。计划的设计目标为 100% 的处方剂量包绕 95% 以上的 PTV 体积，计划中尽量降低患者肺和患者乳腺的受照剂量。仰卧位治疗计划中，主要设计 4 个非共面照射野，射野的角度选择以照射肺最少为宜，必要时再设计 1～2 个子野调节靶区的剂量均匀性。俯卧位治疗计划中，也是主要设计 4 个非共面照射野，射野的角度选择以避免照射到对侧肺为首要因素，并以照射肺最少为宜。因俯卧位时肺组织重叠下垂，如果只设计对穿的非共面射野，患者肺受照剂量较高，因此增设了一个小权重的垂直于靶区的照射野，以降低患者肺的受照剂量（图1）。

5. 统计学处理：采用 SPSS 19.0 软件对数据进行处理，不服从正态分布的计量资料采用秩和检验，服从正态分布者采用配对 t 检验。靶区、OAR 受照剂量变化以及相关性检验采用 Spearman 相关系数分析。P < 0.05 为差异有统计学意义。

结果

1. 不同体位间靶区及患侧乳腺体积比较：仰卧位与俯卧位 TB 间体积差异无统计学意义（P > 0.05），但俯卧位下 CTV 及 PTV 大于仰卧位（Z = -3.01, -2.87, P < 0.05）。仰卧位时全乳体积比俯卧位小 31.85 cm³（Z = -3.20, P < 0.05），两种体位间 PTV 体积与全乳体积的比值差异无统计学意义（P > 0.05，表1）。

2. 不同体位间靶区相关剂量参数比较：仰卧位及俯卧位 100% 等剂量线所包绕的相对体积分别为 97.4% 和 96.9%，差异无统计学意义（P > 0.05）。仰卧位与俯卧位间靶区均匀性指数（homogeneity index, HI）分别为 0.09 和 0.10，差异有统计学意义（Z = -3.137, P < 0.05）。仰卧位及俯卧位间靶区适应形指数（conformal index, CI）符合正态分布，分别为 0.69 ± 0.04 和 0.78 ± 0.04，仰卧位优于俯卧位（t = 9.034, P < 0.05）。

3. 不同体位间 OAR 相关剂量参数比较：结果列于表2。由表2 可知，仰卧位与俯卧位间患侧正常乳腺平均剂量（Dmean）分别为 10.01 和 10.40 Gy，两者差异无统计学意义（P > 0.05）；不同体位间健侧乳腺 Dmean 比较，差异亦无统计学意义（P > 0.05）。

图 1 仰卧位及俯卧位计划野图

A. 仰卧位；B 俯卧位

Figure 1 The picture of segmented fields in supine and prone EB-PBI plans

A. Supine；B. Prone

表 1 30 例患者仰卧位与俯卧位间靶区体积及患侧乳腺体积比较（中位值，cm³）

<table>
<thead>
<tr>
<th>参数</th>
<th>仰卧位</th>
<th>俯卧位</th>
<th>Z 值</th>
<th>P 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>14.40(6.2 – 46.8)</td>
<td>14.10(4.3 – 40.0)</td>
<td>-1.40</td>
<td>0.162</td>
</tr>
<tr>
<td>CTV</td>
<td>57.35(27.8 – 135.4)</td>
<td>62.60(27.3 – 143.2)</td>
<td>-3.01</td>
<td>0.003</td>
</tr>
<tr>
<td>PTV</td>
<td>108.85(61.6 – 238.4)</td>
<td>113.70(55.3 – 234.2)</td>
<td>-2.87</td>
<td>0.004</td>
</tr>
<tr>
<td>全乳体积</td>
<td>578.00(293.4 – 1408.9)</td>
<td>609.85(347.8 – 1857.5)</td>
<td>-3.20</td>
<td>0.001</td>
</tr>
<tr>
<td>PTV/全乳体积</td>
<td>0.175(0.09 – 0.36)</td>
<td>0.183(0.06 – 0.39)</td>
<td>-0.11</td>
<td>0.910</td>
</tr>
</tbody>
</table>

注：括号内为范围值。TB：瘤床；CTV：临床靶区；PTV：计划靶区
表 2 30 例患者仰卧位与俯卧位间 OAR 相关剂量体积参数比较 (中位值)

<table>
<thead>
<tr>
<th>参数</th>
<th>仰卧位</th>
<th>俯卧位</th>
<th>Z 值</th>
<th>P 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>患侧乳腺 $D_{mean}(Gy)$</td>
<td>10.01 (4.49 - 16.04)</td>
<td>10.40 (4.53 - 19.59)</td>
<td>-0.70</td>
<td>0.480</td>
</tr>
<tr>
<td>健侧乳腺 $D_{mean}(Gy)$</td>
<td>0.03 (0.00 - 0.40)</td>
<td>0.05 (0.00 - 0.98)</td>
<td>-0.94</td>
<td>0.388</td>
</tr>
<tr>
<td>患侧肺 $D_{mean}(Gy)$</td>
<td>1.72 (0.60 - 4.27)</td>
<td>1.59 (0.31 - 4.31)</td>
<td>-2.18</td>
<td>0.029</td>
</tr>
<tr>
<td>$V_20(%)$</td>
<td>0.10 (0.02 - 0.23)</td>
<td>0.07 (0.00 - 0.44)</td>
<td>-2.17</td>
<td>0.030</td>
</tr>
<tr>
<td>$V_{10}(%)$</td>
<td>0.04 (0.01 - 0.12)</td>
<td>0.01 (0.00 - 0.10)</td>
<td>-4.74</td>
<td>0.000</td>
</tr>
<tr>
<td>$V_{30}(%)$</td>
<td>0.01 (0.00 - 0.07)</td>
<td>0.00 (0.00 - 0.03)</td>
<td>-4.50</td>
<td>0.000</td>
</tr>
<tr>
<td>心脏 $D_{mean}(Gy)$</td>
<td>0.34 (0.08 - 2.07)</td>
<td>1.19 (0.04 - 3.84)</td>
<td>-4.17</td>
<td>0.000</td>
</tr>
<tr>
<td>$V_5(%)$</td>
<td>0.00 (0.00 - 0.18)</td>
<td>0.05 (0.00 - 0.33)</td>
<td>-3.94</td>
<td>0.000</td>
</tr>
<tr>
<td>左侧患者 $D_{mean}(Gy)$</td>
<td>0.47 (0.15 - 2.07)</td>
<td>2.00 (0.31 - 3.49)</td>
<td>-3.30</td>
<td>0.001</td>
</tr>
<tr>
<td>$V_5(%)$</td>
<td>0.01 (0.00 - 0.18)</td>
<td>0.09 (0.00 - 0.33)</td>
<td>-3.11</td>
<td>0.002</td>
</tr>
<tr>
<td>右侧患者 $D_{mean}(Gy)$</td>
<td>0.20 (0.08 - 1.89)</td>
<td>1.13 (0.15 - 3.84)</td>
<td>-2.53</td>
<td>0.011</td>
</tr>
<tr>
<td>$V_5(%)$</td>
<td>0.00 (0.00 - 0.08)</td>
<td>0.02 (0.00 - 0.24)</td>
<td>-2.40</td>
<td>0.166</td>
</tr>
</tbody>
</table>

仰卧位时患侧肺 D_{mean} 及相应 V_5、V_{10}、V_{20} 均大于俯卧位 ($Z = -2.18$、-2.17、-4.74、$-4.50, P < 0.05$)。对于心脏而言，患者仰卧位时 D_{mean}、V_5 均小于俯卧位时，且差异均有统计学意义 ($Z = -4.12, 3.94, P < 0.05$)；无论左侧还是右侧乳腺，患者仰侧位时 D_{mean}、V_5 均小于俯侧位时，差异均有统计学意义 ($Z = -3.30, -3.11, -2.53, -2.40, P < 0.05$)。同一体位左右侧乳腺比较，$D_{mean}$ 和 V_5 的差异均无统计学意义 ($P > 0.05$)。

3. OAR 剂量参数相关因素分析：仰卧位及俯卧位时 PTV 体积与全乳腺体积的比值与相应体位的患侧乳腺 D_{mean} 均呈正相关 ($r = 0.732, 0.559, P < 0.05$)。无论仰侧位还是俯侧位，$V_{10}$ 均呈负相关 ($r = -0.475, -0.739, -0.746, P < 0.05$)；俯侧位：$r = -0.532, -0.831, -0.666, P < 0.05$)。俯侧位时 V_{30} 均呈明显下降，分别为 1.78 和 1.25 cm ($Z = -4.328, P < 0.05$)。

讨 论

目前，仰卧位放射以其简便的操作和较好的舒适度及较高的重复性等优势，已为中国女性乳腺癌患者保乳术后放疗的最常用模式。但在仰卧位放疗时，乳腺由于重力作用而横跨胸壁，且在乳腺大面下垂的患者中尤为明显，这就使得部分肺和心脏不可能避免地包含在照射野范围之内，同时增加了皮肤皱褶的面积，因而放射性心肺损伤及放射性皮损在所难免 [5,6]，并且仰卧位放疗后心肺不良事件的发生率随着时间的延长而增加 [7,8]。

本研究纳入了 30 例中国早期乳腺癌保乳术后患者，分别在仰侧位、俯侧位 3D-CT 扫描图像上基于术腔金属夹勾画 TB 并构建 CTV 和 PTV。关于仰侧位与俯侧位间 TB 体积 (GTV) 体积差异，目前相关研究报道并不多。本研究结果显示，仰侧位与俯侧位间 TB 体积差异无统计学意义，但 Lakosi 等 [16] 报道了 30 例欧洲女性仰侧位与俯侧位 CT 定位瘤 GTV 体积比较结果，基于血清肿瘤内勾画的 GTV 体积，仰侧位大于俯侧位。本研究与上述结果有不同，原因可能是仰侧位时血清肿瘤的重力下坠作用，而本研究所用组织病瘤无可见血清肿，只基于术腔内金属勾画瘤 TB。本研究结果显示，仰侧位时 CTV 及 PTV 显著大于仰侧位、CTV 和 PTV 分别增
加了 5.25 和 4.85 cm³。这可能与 CTV 建构方式及两种体位时乳腺位置及乳房形态变化相关。因为 CTV 是基于 TB 均匀扩大 10 mm 建构而成，并且仰卧位时乳腺形态因此而舒展，从而导致近皮肤方向及近胸肌方向的修回减少。仰卧位时 PTV 显著大于仰卧位可能主要也是这个原因。本研究发现，仰卧位时，TB 中心至乳头的垂直距离大于仰卧位，也与体位及 PTV 大于仰卧位提供了依据。

实际上，Lakoski 等的研究结果同样为仰卧位及 PTV 大于仰卧位，而且两种体位间体积差明显大于本研究中的数据，可能是因为他们的 CT 及 PTV 构建是基于 CTV 外扩 15 和 10 mm，而本研究则分别为 10 和 5 mm，另一个原因可能是中国女性乳腺小且相对致密。

既往研究结果显示，仰卧位 WBI 时靶区剂量均匀性可获得提高，同时高剂量区的体积也相应减少。尽管有研究显示，仰卧位与仰卧位放疗时靶区剂量均匀性差异并无统计学意义，但仰卧位放疗时靶区适形度优于仰卧位。而本研究结果显示，对于我国早期乳腺癌患者而言，基于仰卧位实施 EB-PBI 时，其靶区适形度优于仰卧位。因此，从靶区剂量学角度看，对我国女性乳腺癌保乳患者，基于仰卧位实施 PBI 是可行的，甚至是在高剂量区适度放疗时的体位，需要进一步研究。

多项研究已证实，虽然仰卧位及俯卧位 WBI 时肺 Dmean 均满足理想剂量限制，但仰卧位放疗可显著降低肺 Dmean 及 V20。铁剑等的研究显示，与仰卧位放疗相比，俯卧位放疗可使肺 V20 由 15.4% 降至 0.7%，V5 由 29% 降至 2.5%。对于 WBI 时肺受照剂量的显著降低似乎是必然的，因重力下垂使靶区中心远离壁胸，如 Dundas 等的研究中，仰卧位放疗时 PTV 中心点至壁胸距离为仰卧位的 1.1 mm 增加至 8.7 mm。对于 EB-PBI，本研究结果显示，仰卧位时肺 Dmean，V5，V10 均显著低于下胸位，分析原因可能是仰卧位时肺部受照射量由于重力下垂，增加了 EB-PBI 靶区至胸壁的距离，从而使肺受照射剂量得以降低。同时，本研究显示，TB 靶区中心点至病侧壁的垂直距离与相应体位下肺病侧壁的受照射剂量参数均呈负相关。因此，就肺部保护而言，无论是 WBI 还是 EB-PBI 均可以从仰卧位中获得益。

WBI 时心脏受照射剂量是备受关注的问题，放疗时心脏受照射体积及剂量越小，放疗后心血管疾病的发生率则越低。有关体位对 WBI 时心脏受照射剂量影响的研究结果不统一，有研究显示仰卧位放疗可有效减小 87% 的左侧乳腺癌患者心脏受照射体积，但也有研究结果显示，左乳腺癌患者仰卧位与俯卧位 WBI 时其心脏 Dmean 差异无统计学意义，而右乳腺癌患者仰卧位 WBI 时其心脏 Dmean 较仰卧位增加。WBI 过大 0.2 Gy 且有统计学意义。相较于 WBI，EB-PBI 可以显著减少心脏受照射剂量，但实施 EB-PBI 时，心脏受照射剂量仍然是重点考虑的问题之一。理论上讲，如果制定完全相同的治疗计划，对于 EB-PBI 实时心脏受照射剂量不应大于仰卧位，而在本研究中，尽管两种体位照射心脏 Dmean 均不大于 1.2 Gy，但俯卧位大于仰卧位。可能的原因是，在制定仰卧位治疗计划时，保护心脏更佳，增加了体位改变较少且方向偏向心脏的照射野。

WBI 时除了关注心脏受照射剂量外，对侧乳腺受照射剂量也备受关注。相对于仰卧位而言，有研究显示，无论在深吸气屏气时或自由呼吸状态下，仰卧位 WBI 时对侧乳腺受照射剂量也显著降低。但也有研究显示，多种体位照射时，对侧乳腺受照射剂量差无统计学意义。对于 EB-PBI，本研究结果显示，仰卧位放疗时患侧乳腺及健侧乳腺 Dmean 均与仰卧位差异无统计学意义。但必须指出的是，本研究中为了避免对侧乳腺受照射剂量增加，仰卧位照射计划设计时照射野的角度选择以避免照射到对侧乳腺为主要因素，也就是说设计治疗计划时就考虑到了对侧乳腺的受照射剂量问题，因此，两种体位实施 EB-PBI 时对侧乳腺受照射剂量问题需要进一步探讨。值得关注的是，无论仰卧还是俯卧，PTV 与乳腺体积的比值与患侧乳腺 Dmean 呈正相关。

综上所述，对我国早期乳腺癌保乳患者而言，在自由呼吸状态下基于仰卧位实施三维适形 EB-PBI 是可行的。虽然仰卧位放疗时患者心脏获益优势不如仰卧位时显著，但仰卧位三维适形治疗计划在降低肺部受照射剂量以及提高靶区剂量适形度方面较仰卧位有明显优势。今后需要进一步研究仰卧位 EB-PBI 时如何增加患者心脏获益并探讨各方面均适合仰卧位 EB-PBI 的患者群。

利益冲突 本文作者与单位没有因此项研究工作接受过第三方的资助或服务，不存在与本工作职责相冲突的任何个人经济利益或非经济利益以及任何直接或间接的义务和责任可能影响或潜在影响稿件的内容。作者声明 于تفسير研究的具体实施和论文的撰写。
玮与李建彬参与论文选题与设计；徐敏、邵倩、张英杰、刘希军和李奉祥参与资料收集与分析；孙涛参与三维适形计划制定

参考文献

[19] 铁剑, 张健, 张艺宝, 等. 早期乳腺癌保乳术后仰卧及俯卧位

(收稿日期:2017-11-27)

- 本刊可直接使用缩写形式的常用词汇

本刊对于以下放射医学工作者比较熟悉的一些常用词汇，将允许在论文撰写和发表文章中直接使用其缩写，可以不标注中文。按汉语拼音排序如下：

白介素(IL)
白细胞(WBC)
苯甲基磺酸氟(PSMF)
丙氨酸转移酶(ALT)
传能线密度(LET)
磁共振成像(MRI)
碘化丙啶(PA)
二氨基联苯胺(diaminobenzidine，DAB)
二甲基亚砜(DMSO)
二氯乙酸(BCA)
4',6-二脒基-2-苯基吲哚(DAPI)4,6-二脒基-2-苯基吲哚(DAPI)
反转录-聚合酶链反应(RT-PCR)
干扰素(IFN)
红细胞(RBC)
放射增敏比(SER)
计划靶区体积(PTV)
计算机断层扫描(CT)
剂量长度乘积(DLP)
剂量体积直方图(DVH)
焦磷酸二乙酯(DEPC)
聚丙烯酰胺凝胶电泳(PAGE)
聚合酶链反应(PCR)
聚偏氟乙烯(PVDF)
链霉亲和素-生物素复合物(strept avidin-bilin complex,SABC)
临床靶区体积(CTV)
磷酸盐缓冲液(PBS)
三维适形放射(3D-CRT)
十二烷基硫酸钠(SDS)
四甲基偶氮显色法(MTT)
苏木精-伊红染色(HE)
胎牛血清(FBS)
体质量指数(BMI)
天冬氨酸转氨酶(AST)
调强适形放疗(IMRT)
危及器官(OAR)
血红蛋白(Hb)
血小板(PLT)
一氧化氮(NO)
异硫氰酸荧光素(FITC)
转化生长因子(TGF)
肿瘤坏死因子(TNF)
大体肿瘤体积(GTV)