乳腺癌是严重危害女性健康的恶性肿瘤,其发病率仅次于肺癌,占全球新发肿瘤的11.6% [1]。Ⅳ期乳腺癌患者预后较差,5年相对生存率仅为29%[2]。尽早诊断和精确评估是改善乳腺癌患者预后的关键。近年来随着影像技术的进步,乳腺癌的检出率显著上升。超声钼靶X射线摄影和MR是目前乳腺癌筛查和诊断的主要方式,但由于乳腺实质密度的影响及医生操作技术水平的差异,诊断的准确性和一致性尚有一定的局限性。正电子发射计算机体层成像(positron emission tomography/computed tomography, PET/CT)作为一种全身性的核素显像技术,具有高灵敏度、高分辨率等优势,可通过应用不同的放射性核素示踪剂,搭载肿瘤相关靶向配体,在活体状态从细胞分子水平对肿瘤组织的生长代谢情况进行可视化标记,并对摄取病灶精准定位和定性,有助于多种类型乳腺癌的早期诊断和评估,为临床治疗方案的选择提供充分的依据[3]。目前,以糖代谢、激素与特定蛋白分泌为靶点研发的PET/CT示踪剂,如18F-脱氧葡萄糖(18F-Fluorodeoxyglucose, 18F-FDG)、18F-氟雌二醇(18F- Fluoroestradiol,18F-FES)及68Ga-成纤维细胞活化蛋白抑制剂(68Ga-fibroblast activation protein inhibitor, 68Ga-FAPI)等,已应用于临床并取得良好的诊疗效果,有助于乳腺癌隐匿性病灶的检出,并为精准治疗提供重要的影像学依据;而针对肿瘤内环境,诸如缺氧、免疫等方面的PET/CT示踪剂的研发也取得了明显进展。随着对肿瘤细胞生物学和分子生物学研究的深入进展,未来将会有更多的PET分子靶向示踪剂用于乳腺癌的个性化精准诊疗。
本文就目前PET/CT不同示踪剂在乳腺癌诊疗中的临床应用进展作一综述,旨在提高对乳腺癌PET/CT相关分子探针的认识。
一、18F-FDG示踪剂PET/CT显像基于肿瘤细胞糖酵解活性升高的原理,18F-FDG应运而生,被称为“世纪分子”。由于乳腺癌肿瘤细胞葡萄糖代谢增强,FDG摄取也会增加。18F-FDG PET/CT通过检测病灶对18F-FDG的摄取与积累进行视觉及半定量分析,可以有效识别乳腺恶性肿块,提供全面的代谢和形态学信息及肿瘤活性的定量数据[4]。根据2024年国家综合癌症网络(National Comprehensive Cancer Network, NCCN)指南,在标准分期不明确或可疑的情况下,FDG PET/CT可辅助诊断分期[5]。18F-FDG PET/CT对原发肿瘤诊断的灵敏度超过90%[6],对远处转移淋巴结灵敏度约为96%~100%,特异性约为91%~98%[7]。此外,其对于胸膜、肾上腺转移的敏感性和特异性分别为100%和99.1%,显著优于乳腺专用CT[8]。尽管指南不常规推荐对早期乳腺癌患者使用18F-FDG PET/CT,但有研究发现该技术在检测临床Ⅰ期、Ⅱ期远处转移方面具有良好表现,检出率分别为11%和20%[9]。18F-FDG PET/CT还可适用于临床上怀疑出现复发,但超声及钼靶等常规影像检查显示阴性的乳腺癌患者。相较于常规影像检查,18F-FDG PET/CT诊断复发病灶的敏感性及特异性显著提高,分别为95.0%和71.43%[10]。Groheux等[11]研究发现,约14%患者因18F-FDG PET/CT检查发现常规影像未发现的新发转移灶,从而被诊断为IV期乳腺癌。18F-FDG PET/CT的应用有助于精准分期,以便实施个性化治疗方案。
最大标准化摄取值(SUVmax)可作为乳腺癌治疗过程中的重点评估内容,有助于乳腺癌恶性程度分级和预后评价[12]。SUVmax的值与复发率和生存周期有关。复发患者的SUVmax值高于无复发患者,且SUVmax值越高,4年无病生存概率越小[13]。此外,SUVmax在ER阴性、PR阴性、HER-2阳性和Ki-67阳性的乳腺癌及三阴性乳腺癌患者中数值更高[14]。因此高SUVmax往往预示着更高的恶性程度或进展风险。然而,在炎症、感染及纤维腺瘤等病变中SUVmax也可升高。目前,双相18F-FDG PET/CT(增加在FDG注射后约2 h获得的图像)的应用已证明可提高18F-FDG PET/CT检测恶性病变的特异性[15]。
二、68Ga-FAPI示踪剂PET/CT显像与18F相比,68Ga因制备方便和成像优异在肿瘤PET/CT诊断中受到了广泛认可。68Ga-FAPI作为靶向肿瘤微环境中FAP的PET/CT新型示踪剂,展现出显著的临床应用潜力。FAP与癌症的不良预后相关[16],在乳腺癌中由活化的成纤维细胞大量表达,而在正常组织中几乎不表达,可作为PET/CT良好靶点。FAPI在人血清中稳定性较高,不受血糖水平或患者运动的影响,并可通过肾脏迅速清除[17]。68Ga-FAPI PET/CT对乳腺癌的敏感性比传统示踪剂更高。Kömek等[18]研究发现,68Ga-FAPI PET/CT检测乳腺原发病变的敏感性接近100%,远高于18F-FDG PET/CT的78.2%。由于68Ga-FAPI的显像不受葡萄糖摄取的干扰,因此在低代谢的乳腺小叶癌和导管癌的诊断中具有更高的敏感性[19]。此外,靶向FAP的PET/CT对于肝脏、骨骼、肠道和腹膜组织等代谢背景较高部位中存在的隐匿病变更加灵敏。
68Ga-FAPI PET/CT中乳腺癌病灶的相对摄取值较高,利于视觉诊断,便于检测到更多病变。活化成纤维细胞丰富的乳腺癌肿瘤在病灶区域表现出较高的68Ga-FAPI摄取,但周围正常组织几乎不摄取68Ga-FAPI[20]。故而在68Ga-FAPI PET/CT显像中的肿瘤组织与正常组织背景差值较大,相对摄取值更高,利于影像分辨及诊断。当肿瘤<1 cm时,68Ga-FAPI的敏感性远高于18F-FDG。有研究发现,73.9%患者进行68Ga-FAPI PET/CT检查时在远处淋巴结、骨骼和肝脏中发现了新的病变[21]。因此,当超声、CT和骨显像等其他成像方式不足以排查乳腺癌转移灶时,68Ga-FAPI PET/CT能有效检测远处转移情况。然而,68Ga-FAPI PET/CT也有一定假阳性率。手术或放射治疗后的继发性炎症纤维化会产生FAPI的摄取,影响68Ga-FAPI PET/CT的特异性。此外,在肿瘤转移早期68Ga-FAPI敏感性更高,随着转移的进展,68Ga-FAPI的摄取减少,敏感性或低于18F-FDG。这种现象可能与肿瘤晚期FAP低表达有关[22]。
三、18F-FES示踪剂PET/CT显像约75%乳腺癌患者的免疫组织学提示雌激素受体(estrogen receptor, ER)为阳性[23]。18F-FES作为一种ER特异性PET示踪剂,能够对ER阳性乳腺癌病灶精准定位定性。18F-FES PET/CT检测肿瘤ER表达的灵敏度约为95%,特异性约为80%[24]。2024年NCCN乳腺癌临床实践指南指出,对于IV期或复发性浸润性乳腺癌患者,在存在ER阳性的情况下可以考虑FES PET/CT检查[5]。浸润性小叶癌(invasive lobular carcinoma, ILC)是除浸润性导管癌外第二常见的乳腺癌类型,ER阳性率约为95%,预后较差[25],然而,其肿瘤糖酵解水平较低,常规18F-FDG示踪剂显像效果较差。18F-FES PET/CT对ILC展现出较高敏感性。Covington等[26]发现24%的ILC患者通过18F-FES PET/CT检测到常规影像学检查未见的转移灶,18%的患者为此改变了临床分期。
ER是内分泌治疗的主要预测指标之一,18F-FES PET/CT有助于确定ER阳性乳腺癌患者转移病灶的ER状态,便于临床调整个体治疗方案。在疾病进展过程中,一些ER阳性的乳腺癌患者可能会出现ER阴性转移灶[27]。此外,尽管一些患者免疫组化上存在ER,却对二线或三线ER靶向治疗反应不佳[28]。因此,确定ER阳性乳腺癌患者转移病灶的ER状态对内分泌治疗的效果非常重要。相比只检测受体表达的免疫组织学,18F-FES PET/CT不仅可以检测转移灶ER功能状态,还可以了解内分泌治疗后内质网的结合情况[29]。通过分析治疗前与治疗期间18F-FES的摄取来判断无效的内质网拮抗剂剂量,可以更早地预测治疗反应,在个体治疗中调整治疗剂量或为切换另一种治疗方案提供依据[30]。较高的18F-FES摄取预示着ER靶向治疗后更好的效果,而18F-FES阴性或弱阳性的患者可尝试化疗等多维度治疗方案。18F-FES PET/CT对ER状态的检测有助于帮助患者减少不必要的活检,减轻经济负担。18F-FES PET/CT还可用于帮助确定ER靶向治疗药物在早期临床试验中的生物有效剂量(biologic effective dose, BED)。在新型药剂的II期临床试验中,通过测量治疗期间18F-FES摄取的减少来确定ER的占用和下调,可获得低于毒性剂量下具有最大疗效的BED[31]。然而,18F-FES代谢速度快,且在肝脏中摄取较高,不利于评估肝脏内转移情况。目前18F-4FMFES和18F-FETE等新型示踪剂仍在研究中[32]。
四、其他放射性示踪剂PET/CT显像上述常用的PET/CT示踪剂已在乳腺癌诊疗中展现出重要的临床价值,但由于乳腺癌存在较多的分子分型,以上示踪剂的临床应用仍有一定的局限性。近年来肿瘤相关分子生物学发展迅猛,更多的乳腺癌分子靶点被发现,为针对性显像和精准治疗提供更多可能,较多学者在此领域做了富有成效的探索。
1. 人表皮生长因子受体2相关示踪剂:人表皮生长因子受体2(human epidermal growth factor receptor 2, HER-2)在20%~30%乳腺癌患者中过表达,与细胞生长、转移扩散、血管生成有关。HER-2的免疫治疗十分昂贵,且其表达在原发肿瘤和转移灶间存在4%~16%的异质性,因此确认HER-2状态对可能受益于HER-2靶向治疗的患者是十分必要的。有实验表明使用89Zr标记的曲妥珠单抗对HER-2预处理一个周期后,结合PET/CT可以预测肿瘤HER-2靶向治疗反应[33]。但这种方法的扫描间隔较长(注射后4 d),可能导致高辐射暴露,同时患者本身使用的以曲妥珠单抗为基础的治疗药物容易对示踪剂产生干扰。与之相比,放射性标记的帕妥珠单抗可能具有优势,它通过采用更短半衰期的核素,如64Cu(半衰期12.7 h)或68Ga(半衰期67.7 min),不仅能与HER-2受体上的不同位点结合,还能在更短时间内完成扫描,减少患者的辐射暴露[34]。
2. 孕激素受体相关示踪剂:在乳腺癌中,孕激素可作为雌激素水平的替代生物标志物。当ER表达被持续的特异性ER治疗饱和时,靶向孕激素受体(progesterone receptor, PR)的PET示踪剂可以作为ER表达的替代品。18F-氟尿嘧啶孕酮(18F-fluorofuranyl norprogesterone,18F-FFNP)是PR相关的新型PET示踪剂。在雌二醇刺激后,18F-FFNP对病灶表现出高敏感性和特异性[35]。肿瘤中18F-FFNP摄取的变化可高度预测ER阳性乳腺癌患者对内分泌治疗的反应。
3. 前列腺特异性膜抗原相关示踪剂:前列腺特异性膜抗原(prostate specific membrane antigen, PSMA)不仅在前列腺癌中大量表达,还在乳腺癌的新生血管中过表达。这种过表达使得PSMA成为乳腺癌成像和治疗的潜在靶点[36]。Marafi等[37]通过对比18F-FDG PET/CT,证实18F-PSMA-1007在乳腺癌脑转移中的灵敏度更高。由于脑组织对FDG具有生理性摄取,PSMA靶向示踪剂为乳腺癌脑转移影像诊断提供新思路。
4. 乏氧相关示踪剂:乳腺癌的复发和转移与乏氧密切相关。乏氧能够使肿瘤细胞对低氧条件产生适应性反应,有助于其在不利的环境中生存。量化乏氧体积,可以预测乳腺癌病情进展。乏氧特异性放射性示踪剂18F-氟代亚硝基咪唑(18F-fluoromisonidazole,18F-FMISO)对乳腺癌中缺氧细胞的亲和力强,其显示的乏氧体积和肿瘤与正常肌肉的比例(tumour-to-normal muscle ratio, T/N)呈显著正相关,具有良好成像效果[38]。新一代亲脂性更低的乏氧示踪剂18F-FBNA与18F-FMISO相比,组织清除率更高,具有更好的图像对比度和更短的扫描时间[39],未来在乳腺癌成像方面可能具有更好前景。
5. 免疫相关示踪剂:免疫相关新型靶向示踪剂可实现监测与治疗一体,并区分肿瘤进展和伪进展。2型肿瘤相关巨噬细胞靶向治疗已被开发用于调节免疫系统、指导免疫治疗的选择及实现实时治疗监测[40]。目前,美国食品和药物管理局已批准程序性死亡受体1抗体用于三阴性乳腺癌(triple negative breast cancer, TNBC)患者。此外带有标记单克隆抗体靶向诱导性T细胞共刺激剂(inducible T-cell costimulatory, ICOS)的PET放射性示踪剂已被证明可以区分肿瘤进展和伪进展,并识别潜在的无反应患者(ICOS PET显示低摄取或无活化T细胞的患者)[41]。由于免疫PET示踪剂在不同试验中的分布不均、表达动态变化、缺乏可重复性等特点,其在临床实践中的作用存在诸多争议,但未来它们可能有助于临床医生筛选适合免疫治疗的患者。
6. 黏蛋白1相关示踪剂:黏蛋白1(MUC1)在90%以上的乳腺癌中过表达,其中在TNBC中表达率高达94%[42]。放射性核素标记的MUC1在MUC1阳性乳腺癌的PET/CT靶向实验中成像效果理想,可观察到其在肿瘤组织中的特异性积累[43]。MUC1还可作为TNBC的潜在免疫治疗靶点。它有助于TNBC细胞的免疫逃逸,与肿瘤转移和低生存率相关。有研究通过MUC1抗体靶向曲妥珠单抗耐药的乳腺癌细胞,证实该抗体能够有效抑制HER-2阳性乳腺癌细胞的生长[44]。由此,MUC1靶向药剂可为临床提供影像成像和治疗一体新思路。
五、乳腺癌分子示踪剂影像检查的辐射剂量PET/CT检查的辐射剂量是乳腺癌诊疗过程中不可忽视的重要问题。辐射剂量的大小不仅影响检查的成像质量及重复检查的合理性,还直接关系到患者的累积辐射暴露。过高的剂量可能增加继发肿瘤的风险。不同核医学示踪剂的辐射剂量因受到单次注射剂量和放射检查设备的影响,存在一定的变化。18F-FDG作为乳腺癌最常用的示踪剂,临床成人单次药物注射剂量通常为7~10 mCi(259~370 MBq),其有效剂量为5~7 mSv,进行CT成像后,单次18F-FDG PET/CT检查总有效剂量为15~20 mSv[45]。其他核素示踪剂的辐射剂量因能量和注射剂量的不同而有所差异:18F-FES单次注射剂量为5~6 mCi(185~222 MBq),有效剂量3~5 mSv[46];与成纤维细胞活化蛋白相关的68Ga-FAPI以及与乳腺癌新生血管相关的68Ga-PSMA注射剂量为3~5 mCi(111~185 MBq),有效剂量为3~6 mSv[47];部分处于临床试验阶段的新型示踪剂最佳注射剂量目前仍在研究中。为降低辐射风险,近年来研究者提出多种优化策略,包括减少放射性示踪剂的剂量、提高探测器灵敏度以及优化CT扫描参数等。研究表明,低剂量CT相较于标准CT可降低50%~80%的辐射剂量[48]。此外,适当减少药物注射剂量并结合高灵敏度探测器,可在保持成像质量的同时降低辐射剂量[49]。国际原子能机构指出,数字化PET/CT的探测器敏感性升高使得整体辐射剂量减少约50%[50]。因此在PET/CT检查过程中,应遵循ALARA(as low as reasonably achievable)原则,合理调整扫描参数,在确保成像质量的前提下尽可能降低辐射剂量。
六、小结与展望PET/CT示踪剂在乳腺癌诊疗中发挥着重要作用。靶向不同肿瘤相关配体的PET/CT示踪剂不仅能够更精确检测乳腺癌的原发病灶和转移灶,进行精准肿瘤分期,还能够从分子和细胞层面深入探索肿瘤的特征,为不同类型的乳腺癌患者提供精准化诊疗。目前临床使用的PET/CT示踪剂存在分型覆盖范围有限、全身扫描辐射剂量大等局限性。随着研究的不断进展,近年来已发现多种具有应用前景的新型示踪剂,部分已进入临床前研究阶段,有望降低不必要的重复检查和辐射暴露,从不同层面有效呈现病灶信息,在乳腺癌精准诊疗中发挥更大价值。
利益冲突 无
作者贡献声明 李华玉撰写论文;宋嘉盈、叶涛和王联芙负责提出论文修改意见;汪裕聪协助论文修改;李强指导论文修改
[1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. DOI:10.3322/caac.21834 |
[2] |
Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(6): 524-541. DOI:10.3322/caac.21754 |
[3] |
贾童童, 史津宇, 李继会, 等. 基于18F-FDG PET/CT的影像组学在预测乳腺癌分子分型和Ki-67表达中的价值[J]. 中华核医学与分子影像杂志, 2024, 44(2): 86-91. Jia TT, Shi JY, Li JH, et al. Value of radiomics signatures based on 18F-FDG PET/CT for predicting molecular classification and Ki-67 expression of breast cancer[J]. Chin J Nucl Med Mol Imaging, 2024, 44(2): 86-91. DOI:10.3760/cma.j.cn321828-20230923-00059 |
[4] |
Ndlovu H, Lawal IO, Mokoala KMG, et al. Imaging molecular targets and metabolic pathways in breast cancer for improved clinical management: current practice and future perspectives[J]. Int J Mol Sci, 2024, 25(3): 1575. DOI:10.3390/ijms25031575 |
[5] |
William J, Meena S, Jame A, et al. Breast cancer (Version 6.2024)[C/OL]. Pennsylvania: National Comprehensive Cancer Network, 2024[2025-12-12].
|
[6] |
Hadebe B, Harry L, Ebrahim T, et al. The role of PET/CT in breast cancer[J]. Diagnostics (Basel), 2023, 13(4): 597. DOI:10.3390/diagnostics13040597 |
[7] |
Vaz SC, Woll JPP, Cardoso F, et al. Joint EANM-SNMMI guideline on the role of 2-18FFDG PET/CT in no special type breast cancer: (endorsed by the ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA)[J]. Eur J Nucl Med Mol Imaging, 2024, 51(9): 2706-2732. DOI:10.1007/s00259-024-06696-9 |
[8] |
Zhang YJ. State of the art in 2022 PET/CT in breast cancer: a review[J]. J Clin Med, 2023, 12(3): 968. DOI:10.3390/jcm12030968 |
[9] |
Han S, Choi JY. Impact of 18F-FDG PET, PET/CT, and PET/MRI on staging and management as an initial staging modality in breast cancer: a systematic review and meta-analysis[J]. Clin Nucl Med, 2021, 46(4): 271-282. DOI:10.1097/rlu.0000000000003502 |
[10] |
Dong Y, Hou H, Wang C, et al. The diagnostic value of 18F-FDG PET/CT in association with serum tumor marker assays in breast cancer recurrence and metastasis[J]. Biomed Res Int, 2015, 2015: 489021. DOI:10.1155/2015/489021 |
[11] |
Groheux D, Hindié E, Giacchetti S, et al. Early assessment with 18F-fluorodeoxyglucose positron emission tomography/computed tomography can help predict the outcome of neoadjuvant chemotherapy in triple negative breast cancer[J]. Eur J Cancer, 2014, 50(11): 1864-1871. DOI:10.1016/j.ejca.2014.04.020 |
[12] |
Ikejiri H, Sasada S, Emi A, et al. Dual-phase FDG PET/CT for predicting prognosis in operable breast cancer[J]. Breast, 2022, 65: 98-103. DOI:10.1016/j.breast.2022.07.008 |
[13] |
Park HL, Lee SW, Hong JH, et al. Prognostic impact of 18F-FDG PET/CT in pathologic stage Ⅱ invasive ductal carcinoma of the breast: re-illuminating the value of PET/CT in intermediate-risk breast cancer[J]. Cancer Imaging, 2023, 23(1): 2. DOI:10.1186/s40644-022-00519-6 |
[14] |
Katal S, McKay MJ, Taubman K. PET Molecular imaging in breast cancer: current applications and future perspectives[J]. J Clin Med, 2024, 13(12): 3459. DOI:10.3390/jcm13123459 |
[15] |
Sasada S, Masumoto N, Kimura Y, et al. Identification of axillary lymph node metastasis in patients with breast cancer using dual-phase FDG PET/CT[J]. AJR Am J Roentgenol, 2019, 213(5): 1129-1135. DOI:10.2214/ajr.19.21373 |
[16] |
Backhaus P, Burg MC, Roll W, et al. Simultaneous FAPI PET/MRI targeting the fibroblast-activation protein for breast cancer[J]. Radiology, 2022, 302(1): 39-47. DOI:10.1148/radiol.2021204677 |
[17] |
Trujillo-Benítez D, Luna-Gutiérrez M, Aguirre-De Paz JG, et al. 68Ga-DOTA-D-Alanine-BoroPro radiotracer for imaging of the fibroblast activation protein in malignant and non-malignant diseases[J]. Pharmaceutics, 2024, 16(4): 532. DOI:10.3390/pharmaceutics16040532 |
[18] |
Kömek H, Can C, Güzel Y, et al. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: a comparative pilot study with the 18F-FDG PET/CT[J]. Ann Nucl Med, 2021, 35(6): 744-752. DOI:10.1007/s12149-021-01616-5 |
[19] |
Taralli S, Lorusso M, Perrone E, et al. PET/CT with fibroblast activation protein inhibitors in breast cancer: diagnostic and theranostic application-a literature review[J]. Cancers (Basel), 2023, 15(3): 908. DOI:10.3390/cancers15030908 |
[20] |
Li T, Jiang X, Zhang Z, et al. Case report: 68Ga-FAPI PET/CT, a more advantageous detection mean of gastric, peritoneal, and ovarian metastases from breast cancer[J]. Front Oncol, 2022, 12: 1013066. DOI:10.3389/fonc.2022.1013066 |
[21] |
Sahin E, Kus T, Aytekin A, et al. 68Ga-FAPI PET/CT as an Alternative to 18F-FDG PET/CT in the imaging of invasive lobular breast carcinoma[J]. J Nucl Med, 2024, 65(4): 512-519. DOI:10.2967/jnumed.123.266798 |
[22] |
Ding F, Huang C, Liang C, et al. 68Ga-FAPI-04 vs. 18F-FDG in a longitudinal preclinical PET imaging of metastatic breast cancer[J]. Eur J Nucl Med Mol Imaging, 2021, 49(1): 290-300. DOI:10.1007/s00259-021-05442-9 |
[23] |
Tsujikawa T, Makino A, Mori T, et al. PET imaging of estrogen receptors for gynecological tumors[J]. Clin Nucl Med, 2022, 47(7): e481-e488. DOI:10.1097/rlu.0000000000004258 |
[24] |
van Geel JJL, Boers J, Elias SG, et al. Clinical validity of 16α-18F-Fluoro-17β-Estradiol positron emission tomography/computed tomography to assess estrogen receptor status in newly diagnosed metastatic breast cancer[J]. J Clin Oncol, 2022, 40(31): 3642-3652. DOI:10.1200/jco.22.00400 |
[25] |
Kurland BF, Wiggins JR, Coche A, et al. Whole-body characterization of estrogen receptor status in metastatic breast cancer with 16α-18F-Fluoro-17β-Estradiol positron emission tomography: meta-analysis and recommendations for integration into clinical applications[J]. Oncologist, 2020, 25(10): 835-844. DOI:10.1634/theoncologist.2019-0967 |
[26] |
Covington MF, Hoffman JM, Morton KA, et al. Prospective pilot study of 18F-Fluoroestradiol PET/CT in patients with invasive lobular carcinomas[J]. AJR Am J Roentgenol, 2023, 221(2): 228-239. DOI:10.2214/ajr.22.28809 |
[27] |
Nienhuis HH, Van Kruchten M, Elias SG, et al. 18F-Fluoroestradiol tumor uptake is heterogeneous and influenced by site of metastasis in breast cancer patients[J]. J Nucl Med, 2018, 59(8): 1212-1218. DOI:10.2967/jnumed.117.198846 |
[28] |
Ulaner GA. 16α-18F-fluoro-17β-Fluoroestradiol (FES): Clinical applications for patients with breast cancer[J]. Semin Nucl Med, 2022, 52(5): 574-583. DOI:10.1053/j.semnuclmed.2022.03.002 |
[29] |
Chae SY, Ahn SH, Kim SB, et al. Diagnostic accuracy and safety of 16α-18F-fluoro-17β-oestradiol PET-CT for the assessment of oestrogen receptor status in recurrent or metastatic lesions in patients with breast cancer: a prospective cohort study[J]. Lancet Oncol, 2019, 20(4): 546-555. DOI:10.1016/s1470-2045(18)30936-7 |
[30] |
Signore A, Lauri C, Auletta S, et al. Radiopharmaceuticals for breast cancer and neuroendocrine tumors: two examples of how tissue characterization may influence the choice of therapy[J]. Cancers (Basel), 2020, 12(4): 781. DOI:10.3390/cancers12040781 |
[31] |
Kumar M, Salem K, Tevaarwerk AJ, et al. Recent advances in imaging steroid hormone receptors in breast cancer[J]. J Nucl Med, 2020, 61(2): 172-176. DOI:10.2967/jnumed.119.228858 |
[32] |
Xu D, Zhuang R, You L, et al. 18F-labeled estradiol derivative for targeting estrogen receptor-expressing breast cancer[J]. Nucl Med Biol, 2018, 59: 48-55. DOI:10.1016/j.nucmedbio.2018.01.003 |
[33] |
Gebhart G, Lamberts LE, Wimana Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial[J]. Ann Oncol, 2016, 27(4): 619-624. DOI:10.1093/annonc/mdv577 |
[34] |
Yeh R, O'Donoghue JA, Jayaprakasam VS, et al. First-in-human evaluation of site-specifically labeled 89Zr-Pertuzumab in patients with HER2-Positive breast cancer[J]. J Nucl Med, 2024, 65(3): 386-393. DOI:10.2967/jnumed.123.266392 |
[35] |
Dehdashti F, Wu N, Ma CX, et al. Association of PET-based estradiol-challenge test for breast cancer progesterone receptors with response to endocrine therapy[J]. Nat Commun, 2021, 12(1): 733. DOI:10.1038/s41467-020-20814-9 |
[36] |
Sathekge M, Lengana T, Modiselle M, et al. 68Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients[J]. Eur J Nucl Med Mol Imaging, 2017, 44(4): 689-694. DOI:10.1007/s00259-016-3563-6 |
[37] |
Marafi F, Sasikumar A, Alfeeli M, et al. 18F-PSMA 1007 uptake in brain metastases from breast cancer[J]. Clin Nucl Med, 2020, 45(2): e77-e79. DOI:10.1097/rlu.0000000000002821 |
[38] |
Costin IC, Marcu LG. Affinity of PET-MRI tracers for hypoxic cells in breast cancer: a systematic review[J]. Cells, 2024, 13(12): 1048. DOI:10.3390/cells13121048 |
[39] |
Dos Santos SN, Wuest M, Jans HS, et al. Comparison of three 18F-labeled 2-nitroimidazoles for imaging hypoxia in breast cancer xenografts: 18FFBNA, 18F FAZA and 18F FMISO[J]. Nucl Med Biol, 2023, 124-125: 108383. DOI:10.1016/j.nucmedbio.2023.108383 |
[40] |
Li C, Xu X, Wei S, et al. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer[J]. J Immunother Cancer, 2021, 9(1): e001341. DOI:10.1136/jitc-2020-001341 |
[41] |
Liberini V, Laudicella R, Capozza M, et al. The future of cancer diagnosis, treatment and surveillance: a systemic review on immunotherapy and immuno-PET radiotracers[J]. Molecules, 2021, 26(8): 2201. DOI:10.3390/molecules26082201 |
[42] |
Hiraki M, Maeda T, Mehrotra N, et al. Targeting MUC1-C suppresses BCL2A1 in triple-negative breast cancer[J]. Signal Transduct Target Ther, 2018, 3: 13. DOI:10.1038/s41392-018-0013-x |
[43] |
Stergiou N, Nagel J, Pektor S, et al. Evaluation of a novel monoclonal antibody against tumor-associated MUC1 for diagnosis and prognosis of breast cancer[J]. Int J Med Sci, 2019, 16(9): 1188-1198. DOI:10.7150/ijms.35452 |
[44] |
Wu G, Li L, Qiu Y, et al. A novel humanized MUC1 antibody-drug conjugate for the treatment of trastuzumab-resistant breast cancer[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(12): 1625-1639. DOI:10.1093/abbs/gmab141 |
[45] |
程远, 王振光. 18F-FDG PET/CT全身显像辐射剂量估计及风险评价[J]. 中华核医学与分子影像杂志, 2017, 37(7): 430-433. Cheng Y, Wang ZG. Estimation of patient radiation dose and risk from whole body 18F-FDG PET/CT examination[J]. Chin J Nucl Med Mol Imaging, 2017, 37(7): 430-433. DOI:10.3760/cma.j.issn.2095-2848.2017.07.012 |
[46] |
Chae SY, Ahn SH, Kim SB, et al. Diagnostic accuracy and safety of 16α-[J]. Lancet Oncol, 2019, 20(4): 546-555. DOI:10.1016/s1470-2045(18)30936-7 |
[47] |
Giesel FL, Kratochwil C, Lindner T, et al. 68Ga-FAPI PET/CT: Biodistribution and preliminary dosimetry estimate of 2 DOTA-Containing FAP-Targeting agents in patients with various cancers[J]. J Nucl Med, 2019, 60(3): 386-392. DOI:10.2967/jnumed.118.215913 |
[48] |
Kaplan S, Zhu YM. Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study[J]. J Digit Imaging, 2019, 32(5): 773-778. DOI:10.1007/s10278-018-0150-3 |
[49] |
Ingbritsen J, Callahan J, Morgan H, et al. Optimisation of low and ultra-low dose scanning protocols for ultra-extended field of view PET in a real-world clinical setting[J]. Cancer Imaging, 2025, 25(1): 7. DOI:10.1186/s40644-025-00823-x |
[50] |
Singh MK. A review of digital PET-CT technology: comparing performance parameters in SiPM integrated digital PET-CT systems[J]. Radiography (Lond), 2024, 30(1): 13-20. DOI:10.1016/j.radi.2023.10.004 |