中华放射医学与防护杂志  2025, Vol. 45 Issue (4): 325-333   PDF    
某铀矿周围中老年男性居民炎性指标水平及其影响因素
陈冠友1,2 , 陈慧峰1 , 李慧娴1,2 , 黄伟旭1 , 邹剑明1     
1. 广东省职业病防治院, 广州 510300;
2. 中山大学公共卫生学院, 广州 510080
[摘要] 目的 探讨广东某铀矿周围不同居住距离中老年男性居民炎性指标水平及其影响因素, 为铀矿周围居民健康风险评估提供科学数据。方法 采用分层抽样方法以铀矿为中心, 按铀矿周围距离<10 km和10~20 km的半径范围分两组, 抽取常住中老年男性居民作为调查对象, 采用面对面问卷调查获取基本人口社会学特征和生活方式等信息。按照标准方法测量调查对象身高体重并计算体质量指数(BMI), 采集静脉血并检测C反应蛋白(CRP)、补体C3、补体C4、白细胞数目、淋巴细胞数目、中性粒细胞数目、肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)等炎性指标水平。采用多重线性回归对各项指标影响因素进行分析。结果 共纳入常住中老年男性居民867人, 其中10~20 km组431人, 平均年龄(51.54±5.37)岁; <10 km组436人, 平均年龄(52.05±5.24)岁。多重线性回归结果显示, 某铀矿距离分组与中老年男性居民的补体C4水平(β=0.014, 95%CI: 0.001~0.027)、淋巴细胞数目(β=0.086, 95%CI: 0.003~0.168)呈现正相关(t=2.07、2.04, P<0.05);年龄与补体C4(β=0.018, 95%CI: 0.004~0.031)水平呈正相关(t=2.50, P<0.05), 与TNF-α(β=-63.022, 95%CI: -101.114~-24.929)、IL-6(β=-14.694, 95%CI: -24.396 ~ -4.992)水平呈负相关(t=-3.25、-2.97, P<0.05)。吸烟与白细胞数目(β=0.630, 95%CI: 0.341~0.918)、淋巴细胞数目(β=0.226, 95%CI: 0.134~0.319)、中性粒细胞数目(β=0.372, 95%CI: 0.143~0.601)呈正相关(t=4.29、4.81、3.19, P<0.05), 与TNF-α(β=-43.551, 95%CI: -84.778~-2.324)、IL-6(β=-10.603, 95%CI: -21.103~-0.102)水平呈负相关(t=-2.07、-1.98, P<0.05)。BMI与补体C3水平(β=0.108, 95%CI: 0.084~0.133)、补体C4水平(β=0.026, 95%CI: 0.012~0.039)、白细胞数目(β=0.433, 95%CI: 0.166~0.699)、淋巴细胞数目(β=0.175, 95%CI: 0.089~0.261)、中性粒细胞数目(β=0.226, 95%CI: 0.014~0.438)呈正相关(t=8.60、3.62、3.18、4.01、2.10, P<0.05)。食用水果(β=0.017, 95%CI: 0.001~0.034)与补体C4水平呈正相关(t=2.10, P<0.05)。结论 本研究表明该铀矿周围中老年男性居民的炎性指标水平与铀矿开采无明显相关。年龄、吸烟、BMI和食用水果为中老年男性居民炎性指标水平的影响因素。
[关键词] 铀矿    炎性细胞    炎症因子    中老年居民    
A study on inflammatory indicators levels and influencing factors of middle-aged and elderly male residents around a uranium mine
Chen Guanyou1,2 , Chen Huifeng1 , Li Huixian1,2 , Huang Weixu1 , Zou Jianming1     
1. Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China;
2. School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
[Abstract] Objective To investigate the inflammatory indicator levels and influencing factors on middle-aged and elderly male residents at different residential distances from a uranium mine in Guangdong, so as to provide scientific data for the health risk assessment of the residents therein. Methods With stratified sampling method, two groups of the permanent middle-aged and elderly male residents were randomly sampled within < 10 km and 10-20 km of the uranium mine, along with the basic demographic characteristics and lifestyle information collected through face-to-face questionnaire survey. Both height and weight of the respondents were measured using standard method and their body mass indexes (BMI) were calculated. Through collection of the venous blood, the levels of a wide range of inflammatory indicators were measured, such as C-reactive protein (CRP), complement C3, complement C4, leukocytes, lymphocytes, neutrophils, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and others. Multiple linear regression was used to analyze the influencing factors on the levels of inflammation indicators. Results A total of 867 middle-aged and elderly male residents were included in this study, including one group of 431 residents within the 10-20 km at an average age of 51.54±5.37, and a second group of 436 residents within < 10 km at an average age of 52.05±5.24. The result of multiple linear regression showed a positive correlation of the distance groups with complement C4 level (β=0.014, 95%CI: 0.001-0.027) and lymphocyte number (β=0.086, 95%CI: 0.003-0.168) (t=2.07, 2.04, P < 0.05). The ages of middle-aged and elderly male residents around the uranium mine was positively correlated (t=2.50, P < 0.05) with the levels of complement C4 (β=0.018, 95%CI: 0.004-0.031), and negatively correlated (t=-3.25, -2.97, P < 0.05) with the levels of TNF-α (β=-63.022, 95%CI: -101.114 to -24.929) and IL-6 (β=-14.694, 95%CI: -24.396 to -4.992). Smoking was positively correlated (t=4.29, 4.81, 3.19, P < 0.05) with leukocytes number (β=0.630, 95%CI: 0.341-0.918), lymphocytes number (β=0.226, 95%CI: 0.134-0.319) and neutrophils number (β=0.372, 95%CI: 0.143-0.601), and negatively correlated (t=-2.07, -1.98, P < 0.05) with the levels of TNF-α (β=-43.551, 95%CI: -84.778 to -2.324) and IL-6 (β=-10.603, 95%CI: -21.103 to -0.102). BMI was positively correlated (t=8.60, 3.62, 3.18, 4.01, 2.10, P < 0.05) with complement C3 level (β=0.108, 95%CI: 0.084-0.133), complement C4 level (β=0.026, 95%CI: 0.012-0.039), leukocytes number (β=0.433, 95%CI: 0.166-0.699), lymphocyte number (β=0.175, 95%CI: 0.089-0.261), and neutrophil number (β=0.226, 95%CI: 0.014-0.438). Fruit consumption (β=0.017, 95%CI: 0.001-0.034) was positively correlated with complement C4 levels (t=2.10, P < 0.05). Conclusions This study showed no significant correlation between the inflammatory index levels of middle-aged and elderly male residents around the uranium mine and uranium mining. Age, smoking, BMI and fruit consumption were the influencing factors on the levels of inflammatory indicators of middle-aged and elderly male residents.
[Key words] Uranium mine    Inflammatory cells    Inflammatory factors    Middle-aged and elderly residents    

铀矿在开采、冶炼的过程中产生的放射性废弃物(固体、废水和气体)含多种放射性核素,可能引起氡及其子体的释放和尾矿的放射性污染等,放射性核素在周围土壤、地表水和地下水中进行扩散、迁移可导致铀矿周围地区环境辐射剂量率、地表水总α和总β以及土壤样品放射性水平显著高于上游监测值或参考值,可能对周围环境介质构成长期的潜在放射性危害[1-5]。新墨西哥州开展的队列研究表明,居住于铀矿周围地区的男性肺癌死亡率显著升高[6]。另一项研究则发现废弃铀矿附近居民的自身免疫水平显著增强[7],但有关我国铀矿周围居民的健康影响研究却鲜有报道。广东某铀矿包括3个矿区,开采至今已有70多年的历史[8],以矿区为中心周围20 km范围内有常住居民约28万人,了解铀矿开采对周围居民的健康影响具有一定的现实意义。

炎症通常作为一种响应诸如感染、毒物、细胞受损或辐射损伤的保护性反应[9]。有研究表明电离辐射可引发并调节机体免疫[10-11]。辐射流行病学研究表明,长期电离辐射暴露的核爆幸存者的肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、C反应蛋白(CRP)等炎症指标水平均显著升高[12-13];美国俄亥俄州铀矿周围地区2 km以内居民的白细胞计数增加[14]。但有关铀矿周围居民炎性指标水平及其影响因素的研究证据仍然有限。

本研究选择居住在某铀矿周围不同距离的中老年男性居民为调查对象,探讨铀矿周围居住距离与机体炎性指标水平相关性及其影响因素,为评估铀矿周围居民的长期健康风险及环境辐射防护政策制定等提供科学数据。

资料与方法

1.调查对象:采用分层抽样方法,以某铀矿山为中心,参考孙小娜等[15]并考虑到铀矿周围5 km以内人口稀少的情况,按铀矿周围<10 km和10 ~ 20 km的半径范围分两组,<10 km组选取常年主导下风向村落中的中老年男性居民,10 ~20 km组选取常年主导上风向村落中的中老年男性居民。纳入标准:男性,年龄≥40岁,出生于本地并居住40年以上;外出或异地居住不超过一年。排除标准:半年内有X射线接触史、肿瘤或慢性病现患史、肿瘤家族史、长期药物服用史、近期罹患感染性疾病等。所有调查对象均知情同意。本研究经广东省职业病防治院医学伦理委员会(编号GDHOD MEC 2019023)审核通过。

2.问卷调查及录入:采用自行编制的《居民健康调查问卷》收集调查对象的人口社会学资料,由经统一培训的调查人员对调查对象进行一对一、面对面地调查。调查内容包括基本人口学特征和生活方式(饮食习惯、吸烟、饮酒等)、既往及现患病史、服用药物等基本情况。结合文献[16-17],以每天吸烟1支以上定义为吸烟,并将戒烟者也视为吸烟;饮酒定义为日均饮白酒>30 g或饮啤酒>150 ml。对回收的问卷进行核对,剔除无效问卷(问卷中超过10%的选项错漏等)。采用EpiData 3.1软件进行双人录入调查问卷。

3.调查对象体格检查及炎性指标检测

(1) 身高和体重测量:参考《国民体质测定标准(2023年修订)》[18]进行。身高计测量身高,测量前脱去鞋物,背靠身高计立柱,调查人员将身高计的水平板移至调查对象头顶后,读取身高值同时测量体重并做记录。

(2) 体质量指数(BMI)分类:根据《成人体重判定》(WS/T 428-2013)[19],BMI=体重/身高2(kg/m2),BMI<18.5 kg/m2为体重过低,18.5 kg/m2≤BMI<24 kg/m2为体重正常,24 kg/m2 ≤BMI<28 kg/m2为超重,BMI≥28 kg/m2为肥胖。本研究将体重过低以及体重正常合并为BMI<24 kg/m2组;将超重以及肥胖合并为BMI≥24 kg/m2[20]

(3) 炎症指标检测:参考《临床血液检验常用项目分析质量标准》(WS/T 406-2024)[21],采集调查对象空腹外周静脉血共5 ml,其中2 ml乙二胺四乙酸(EDTA)抗凝血用于血常规检查,3 ml非抗凝血用于生化指标检测。采用血液细胞自动分析仪(Mindray,中国)检测白细胞、淋巴细胞和中性粒细胞数目;采用全自动生化分析仪(Mindray,中国)检测炎症感染指标(CRP、补体C3、补体C4)。按照酶联免疫分析(ELISA)检测试剂盒(中国江苏酶标)说明书检测血清TNF-α和IL-6水平。

4.统计学处理:使用SPSS 27.0软件进行统计分析。计数资料采用频数(构成比)即n(%)进行描述。计量资料经过正态性检验服从正态分布或近似正态分布使用x±s进行描述,两组间差异比较采用独立样本t检验;不服从正态分布使用中位数(M)和第25、75百分位数(P25P75)进行描述,两组间差异比较采用Mann-Whitney U检验。采用多重线性回归的方法分析炎性指标水平的影响因素。自变量赋值中,铀矿距离:10~20 km=0(参照),<10 km=1;年龄:≤50岁=0(参照),>50岁=1;吸烟:否=0(参照),是=1;饮酒:否=0(参照),是=1;BMI:<24 kg/m2=0(参照),≥24 kg/m2=1;食用水果:偶尔/从不=0(参照),经常=1;食用坚果:偶尔/从不=0(参照),经常=1;食用大蒜:偶尔/从不=0(参照),经常=1。将BMI、食用水果、坚果以及大蒜作为主要的混杂因素进行分析。采用双侧检验,P<0.05为差异有统计学意义。

结果

1.基本情况:本研究共发放878份调查问卷,回收867份有效问卷,有效问卷的回收率为98.75%。本研究最终纳入867名调查对象,平均年龄(51.79±5.31)岁,其中距离10 ~ 20 km组431人,平均年龄(51.54±5.37)岁;<10 km组436人,平均年龄(52.05±5.24)岁。铀矿周围不同距离组中老年男性居民年龄、吸烟情况、饮酒情况、BMI等个体特征之间差异均无统计学意义(P > 0.05,表 1)。

表 1 某铀矿周围不同距离组中老年男性居民的基本情况 Table 1 Basic information of middle-aged and elderly male residents in different distance groups around a uranium mine

2.某铀矿周围中老年男性居民炎性指标水平:与10 ~ 20 km组相比,<10 km组中老年男性居民的补体C4水平较高(t=-2.10,P=0.036),TNF-α(Z=-4.31,P<0.001)、IL-6(Z=-2.14,P=0.032)水平较低;与≤50岁组相比,年龄>50岁组中老年男性居民的补体C4水平较高(t=-2.11,P=0.035),TNF-α(Z=-2.06,P=0.039)、IL-6(Z=-3.04,P=0.002)水平较低;与BMI<24 kg/m2组相比,BMI≥24 kg/m2组中老年男性居民的CRP(Z=-5.11,P<0.001)、补体C3(t=-8.59,P<0.001)、补体C4(t=-3.45,P<0.001)、白细胞数目(t=-2.94,P=0.003)、淋巴细胞数目(t=-3.83,P<0.001)和IL-6水平(Z=-2.16,P=0.031)较高。见表 2

表 2 某铀矿周围中老年男性居民炎性指标水平 Table 2 Inflammatory indicators of middle-aged and elderly male residents around a uranium mine

3.某铀矿周围中老年男性居民炎性指标水平影响因素分析:结果显示,某铀矿距离分组与中老年男性居民的补体C4水平(β=0.014,95%CI:0.001~0.027)、淋巴细胞数目(β=0.086,95%CI:0.003~0.168)呈正相关(t=2.07、2.04,P<0.05)。年龄与补体C4(β=0.018,95%CI:0.004~0.031)水平呈正相关(t=2.50,P<0.05),与TNF-α(β=-63.022,95%CI:-101.114~-24.929)、IL-6(β=-14.694,95%CI:-24.396~-4.992)水平呈负相关(t=-3.25、-2.97,P<0.05)。吸烟与白细胞数目(β=0.630,95%CI:0.341~0.918)、淋巴细胞数目(β=0.226,95%CI:0.134~0.319)、中性粒细胞数目(β=0.372,95%CI:0.143~0.601)呈正相关(t=4.29、4.81、3.19,P<0.05),与TNF-α(β=-43.551,95%CI:-84.778~-2.324)、IL-6(β=-10.603,95%CI:-21.103~-0.102)水平呈负相关(t=-2.07、-1.98,P<0.05)。BMI与补体C3水平(β=0.108,95%CI:0.084~0.133)、补体C4水平(β=0.026,95%CI:0.012~0.039)、白细胞数目(β=0.433,95%CI:0.166~0.699)、淋巴细胞数目(β=0.175,95%CI:0.089~0.261)、中性粒细胞数目(β=0.226,95%CI:0.014~0.438)呈正相关(t=8.60、3.62、3.18、4.01、2.10,P<0.05)。食用水果(β=0.017,95%CI:0.001~0.034)与补体C4水平呈正相关(t=2.10,P<0.05)。见表 3

表 3 某铀矿周围中老年男性居民炎性指标水平影响因素分析 Table 3 Analysis of influencing factors on inflammatory indicators of middle-aged and elderly male residents around a uranium mine

讨论

铀矿周围地区的放射性水平及其健康影响一直是公众广泛关注的问题。研究显示某铀矿周围饮用水总α和总β放射性水平与对照区相比显著升高[15]。施宸皓等[22]发现某铀矿周围土壤中铀浓度高于研究区域土壤环境背景值。以往研究较多关注铀矿对铀矿工人的健康效应,较少开展铀矿周围居民的健康效应研究。本研究纳入铀矿周围中老年男性居民为调查对象,探讨铀矿周围居住距离与机体炎性指标水平相关性及其影响因素,旨在为评估铀矿周围居民健康风险影响因素及制定铀矿周围环境辐射政策等提供科学数据。在本研究纳入的867名调查对象中,<10 km组和10~20 km组中老年男性居民在年龄、吸烟、饮酒、BMI、水果食用频率、坚果食用频率以及大蒜食用频率方面差异均无统计学意义,提示两组调查对象之间具有较好的可比性。

在炎症发生发展过程中,炎症感染指标、外周血炎症细胞数目以及血清炎症因子在恢复组织内稳态中发挥重要作用。CRP既是炎症感染的标志物,也是炎症过程中重要的调节因子[23];补体C3、补体C4在脂肪组织中产生,可能参与脂肪组织代谢和局部炎症[24]。中性粒细胞作为主要的白细胞亚群,在炎症发作期间被募集并发挥作用[25]。血清炎症因子IL-6在促进炎症发生的过程中起重要作用[26];TNF-α是巨噬细胞/单核细胞在急性炎症期间产生的炎性细胞因子,负责细胞内信号传导[27]。关于电离辐射与炎症水平的相关研究表明,放射治疗可上调肿瘤病人补体成分(补体C3、补体C4等)和急性期蛋白(CRP等)水平[28];一项关于电离辐射职业暴露工作人员炎症水平的研究表明,电离辐射暴露可导致机体IL-6、TNF-α水平升高[29-30]

多重线性回归发现,与10~20 km组相比,铀矿周围<10 km组中老年男性居民补体C4水平和淋巴细胞数目升高。既往多项研究发现暴露于低剂量电离辐射的职业人员补体C4水平降低[31],铀矿周围40岁以下居民NK细胞和T淋巴细胞的数目显著减少[32],废弃铀矿附近居民和曾在铀矿工作的矿工T淋巴细胞和B淋巴细胞水平均显著降低[33]。上述研究主要针对职业人群以及铀矿周围40岁以下居民,与本研究纳入的铀矿周围40岁以上中老年男性居民的人群结构特征有所不同,结果不一致的原因可能与调查对象的性别、年龄及铀尾矿现况等有关[34-35]。但一项关于阳江高本底辐射地区人群免疫影响研究表明,长期低剂量电离辐射可引起人群CD8+T淋巴细胞数量显著增加,增强机体免疫水平[36],本研究结果与之一致,提示铀矿周围<10 km组居民淋巴细胞数目升高的原因可能是长期接触低剂量电离辐射后机体产生适应性反应的结果。此外,本研究未发现铀矿周围距离分组与CRP、补体C3、白细胞数目、中性粒细胞数目、TNF-α和IL-6水平之间存在相关关系,提示该铀矿周围中老年男性居民的炎性指标水平受铀矿开采的影响较小。随着年龄的增长,某铀矿周围中老年男性居民补体C4水平显著增加,IL-6和TNF-α水平显著降低,Arosio等[37]的研究表明,TNF-α、IL-6水平随着年龄的增加而显著增加,本研究结果与之不一致,可能由于两项研究之间调查对象的性别比例、个体特征以及所处环境存在差异。本研究显示,吸烟与白细胞数目、淋巴细胞数目、中性粒细胞数目呈正相关,与Wannamethee等[38]的研究结果一致,其可能机制为香烟烟雾中的尼古丁可诱导儿茶酚胺的释放并促进皮质醇水平的升高,从而增加白细胞数目[39];本研究显示, 吸烟与TNF-α、IL-6水平呈负相关,而既往研究表明吸烟与TNF-α、IL-6水平升高相关[40],与本研究结果不一致的原因可能是本研究所纳入研究对象为长期居住于铀矿周边且年龄均>40岁中老年男性居民,与其他全年龄段的大样本人群调查研究有所不同。此外,Feng等[41]研究发现血清TNF-α水平与每日吸烟量之间存在强负相关,但吸烟与血清IL-6之间无明显关联,提示吸烟与TNF-α、IL-6水平之间的关联有待在多中心大规模人群研究中证实。BMI与补体C3水平、补体C4水平、白细胞数目、淋巴细胞数目、中性粒细胞数目呈现显著正相关。Wei等[42]研究表明BMI升高与血浆补体C3浓度升高显著相关,可能原因是脂肪细胞增多导致补体蛋白的分泌增加;此外,Herishanu等[43]发现较高的BMI与白细胞增多相关,可能由于脂肪组织可产生和释放促炎细胞因子及趋化因子,诱导白细胞数目增加;Furuncuo lu等[44]研究表明BMI与白细胞、淋巴细胞及中性粒细胞数目呈显著正相关;Kawai等[45]研究也表明体重增加和肥胖可能导致体内白色脂肪组织表型转换,在局部和全身分泌促炎细胞因子,导致机体炎性指标水平升高。

本研究也存在一定的局限性,首先,本研究选取的调查对象为40岁以上的中老年男性居民,炎症指标水平的性别间差异尚待探讨;其次,本研究后续将参考《核电站周围居民健康调查规范》(WS/T 440-2014)[46],并考虑铀矿周围居民居住实际情况,进行更细的铀矿距离分组以探讨不同铀矿距离对周围居民的健康影响;此外,本研究为横断面研究,无法进行因果推断。后续将扩大人群样本量,建立铀矿周围居民队列,并综合室内氡浓度、环境地表γ辐射剂量率以及膳食、饮用水和食品放射性水平等,精确估算铀矿周围居民辐射有效剂量,深入探讨长期接触低剂量电离辐射与机体炎症指标水平的相关性及其潜在机制。本研究现有结果表明该铀矿周围中老年男性居民的炎性指标水平与铀矿开采无明显相关。年龄、吸烟、BMI以及食用水果为铀矿周围居民炎性指标水平的重要影响因素,应开展针对铀矿周围中老年人群为主的健康教育宣传,倡导健康生活方式,维持健康体重,多食用水果蔬菜、戒烟限酒以促进健康。

利益冲突  无

作者贡献声明  陈冠友负责数据收集整理及分析、论文撰写与修改;陈慧峰负责数据收集与管理、论文修改;李慧娴和黄伟旭协助实验、数据分析以及文献资料调研与整理;邹剑明负责提出研究选题、数据分析和论文修改

参考文献
[1]
Qin G, Liu Y, Wang Q, et al. Investigation and analysis of environmental radioactivity levels at typical uranium mines in the south of China[J]. Radiat Prot Dosim, 2020, 189(3): 337-346. DOI:10.1093/rpd/ncaa047
[2]
Bıyık R, Bingölda Aɡǧ N, Ataksor B, et al. Radiological assessment of natural radioactivity in a uranium deposit area: Koprubasi, Turkiye[J]. Radiat Prot Dosim, 2023, 199(2): 134-145. DOI:10.1093/rpd/ncac232
[3]
Araújo Dos Santos Júnior J, Dos Santos Amaral R, Simões Cezar Menezes R, et al. Influence of terrestrial radionuclides on environmental gamma exposure in a uranium deposit in Paraíba, Brazil[J]. Ecotoxicol Environ Saf, 2017, 141: 154-159. DOI:10.1016/j.ecoenv.2017.02.004
[4]
岑旭, 彭崇, 郭凯行, 等. 广西某铀矿流出物和周围水体放射性水平现状监测及评价[J]. 广东化工, 2022, 49(7): 162-164, 177.
Cen X, Peng C, Guo KX, et al. Monitoring and evaluation of radioactive level in effluent and surrounding water of a uranium mine in Guangxi[J]. Guangdong Chem Ind, 2022, 49(7): 162-164, 177. DOI:10.3969/j.issn.1007-1865.2022.07.055
[5]
孙功明, 李冠超, 白书明, 等. 某铀矿富集区及其周围环境放射性现状调查[J]. 辐射防护通讯, 2015, 35(2): 32-36.
Sun GM, Li GC, Bai SM, et al. An environment radioactivity survey in and around a uranium enrichment area in Guangdong province[J]. Radiat Prot Bull, 2015, 35(2): 32-36.
[6]
Boice JD Jr, Mumma MT, Blot WJ. Cancer incidence and mortality in populations living near uranium milling and mining operations in grants, New Mexico, 1950-2004[J]. Radiat Res, 2010, 174(5): 624-636. DOI:10.1667/RR2180.1
[7]
Erdei E, Shuey C, Pacheco B, et al. Elevated autoimmunity in residents living near abandoned uranium mine sites on the Navajo Nation[J]. J Autoimmun, 2019, 99: 15-23. DOI:10.1016/j.jaut.2019.01.006
[8]
中国核工业地质局. 发展历程[EB/OL]. (2020-07-15)[2024-07-08]. https://www.bog.com.cn/zghgydzj/dzkj/ykkc/600965/index.html.
China Bureau of Geology for Nuclear Industry. History of development[EB/OL]. (2020-07-15)[2024-07-08]. https://www.bog.com.cn/zghgydzj/dzkj/ykkc/600965/index.html.
[9]
Oronsky B, Caroen S, Reid T. What exactly is inflammation (and what is it not?)[J]. Int J Mol Sci, 2022, 23(23): 14905. DOI:10.3390/ijms232314905
[10]
Lumniczky K, Impens N, Armengol G, et al. Low dose ionizing radiation effects on the immune system[J]. Environ Int, 2021, 149: 106212. DOI:10.1016/j.envint.2020.106212
[11]
United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2006 Annex D. Effects of ionizing radiation on the immune system[R]. Vienna: UNSCEAR, 2008.
[12]
Hayashi T, Morishita Y, Kubo Y, et al. Long-term effects of radiation dose on inflammatory markers in atomic bomb survivors[J]. Am J Med, 2005, 118(1): 83-86. DOI:10.1016/j.amjmed.2004.06.045
[13]
Hayashi T, Kusunoki Y, Hakoda M, et al. Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors[J]. Int J Radiat Biol, 2003, 79(2): 129-136. DOI:10.1080/0955300021000038662
[14]
Pinney SM, Freyberg RW, Levine GE, et al. Health effects in community residents near a uranium plant at Fernald, Ohio, USA[J]. Int J Occup Med Environ Health, 2003, 16(2): 139-153.
[15]
孙小娜, 拓飞, 陈玉琴, 等. 某铀矿周围与对照区饮用水的放射性水平及其健康风险评估[J]. 国际放射医学核医学杂志, 2024, 48(2): 114-122.
Sun XN, Tuo F, Chen YQ, et al. Radioactivity levels and health risk assessment of drinking water around a uranium mine and control area[J]. Int J Radiat Med Nucl Med, 2024, 48(2): 114-122. DOI:10.3760/cma.j.cn121381-202306022-00391
[16]
卢华, 林能波, 曹灵. 吸烟、饮酒、居住地不同的特发性膜性肾病患者临床特点分析[J]. 山东医药, 2018, 58(14): 17-20.
Lu H, Lin NB, Cao L. Clinical characteristics of idiopathic membranous nephropathy patients with the habits of smoking, drinking and living in different environment[J]. Shandong Med J, 2018, 58(14): 17-20.
[17]
Zhu F, Boersma E, Tilly M, et al. Trends in population attributable fraction of modifiable risk factors for cardiovascular diseases across three decades[J]. Eur J Prev Cardiol, 2024, 31(14): 1724-1733. DOI:10.1093/eurjpc/zwae219
[18]
国家体育总局. 国家国民体质监测中心关于发布《国民体质测定标准(2023年修订)》的通知[EB/OL]. (2023-08-10)[2024-12-26]. https://www.sport.gov.cn/n315/n20001395/c25880704/content.html.
General Administration of Sports of China. Notice of the national physical fitness monitoring center on the issuance of the "National physical fitness measurement standards (Revised in 2023)"[EB/OL]. (2023-08-10)[2024-12-26]. https://www.sport.gov.cn/n315/n20001395/c25880704/content.html.
[19]
国家卫生和计划生育委员会. WS/T 428-2013成人体重判定[S]. 北京: 中国标准出版社, 2013.
National Health and Family Planning Commission of the People's Republic of China. WS/T 428-2013 Criteria of weight for adults[S]. Beijing: Standards Press of China, 2013.
[20]
Zeng Q, He Y, Dong S, et al. Optimal cut-off values of BMI, waist circumference and waist: height ratio for defining obesity in Chinese adults[J]. Br J Nutr, 2014, 112(10): 1735-1744. DOI:10.1017/S0007114514002657
[21]
国家卫生健康委员会. WS/T 406-2024临床血液检验常用项目分析质量标准[S]. 北京: 中国标准出版社, 2024.
National Health Commission of the People's Republic of China. WS/T 406-2024 Clinical blood tests commonly used items to analyze quality standards[S]. Beijing: Standards Press of China, 2024.
[22]
施宸皓, 梁婕, 曾光明, 等. 某废弃铀矿周边农田土壤重金属和放射性元素的风险分析和修复措施[J]. 环境工程学报, 2018, 12(1): 213-219.
Shi CH, Liang J, Zeng GM, et al. Assessment of heavy metal and radionuclide pollution risk in farmland around an abandoned uranium mine and its related remediation measures[J]. Chin J Envir Engineer, 2018, 12(1): 213-219. DOI:10.12030/j.cjee.201701006
[23]
Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection[J]. Front Immunol, 2018, 9: 754. DOI:10.3389/fimmu.2018.00754
[24]
Hertle E, Stehouwer CD, van Greevenbroek MM. The complement system in human cardiometabolic disease[J]. Mol Immunol, 2014, 61(2): 135-148. DOI:10.1016/j.molimm.2014.06.031
[25]
Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation[J]. Front Immunol, 2018, 9: 2712. DOI:10.3389/fimmu.2018.02712
[26]
Puchner A, Blüml S. IL-6 blockade in chronic inflammatory diseases[J]. Wien Med Wochenschr, 2015, 165(1-2): 14-22. DOI:10.1007/s10354-014-0321-x
[27]
Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s)[J]. Microsc Res Tech, 2000, 50(3): 184-195. DOI: 10.1002/1097-0029(20000801)50:3<3.0.CO;2-H.
[28]
Widlak P, Jelonek K, Wojakowska A, et al. Serum proteome signature of radiation response: upregulation of inflammation-related factors and downregulation of apolipoproteins and coagulation factors in cancer patients treated with radiation therapy—a pilot study[J]. Int J Radiat Oncol Biol Phys, 2015, 92(5): 1108-1115. DOI:10.1016/j.ijrobp.2015.03.040
[29]
Ahmad IM, Abdalla MY, Moore TA, et al. Healthcare workers occupationally exposed to ionizing radiation exhibit altered levels of inflammatory cytokines and redox parameters[J]. Antioxidants (Basel), 2019, 8(1). DOI:10.3390/antiox8010012
[30]
Aneva N, Zaharieva E, Katsarska O, et al. Inflammatory profile dysregulation in nuclear workers occupationally exposed to low-dose gamma radiation[J]. J Radiat Res, 2019, 60(6): 768-779. DOI:10.1093/jrr/rrz059
[31]
Godekmerdan A, Ozden M, Ayar A, et al. Diminished cellular and humoral immunity in workers occupationally exposed to low levels of ionizing radiation[J]. Arch Med Res, 2004, 35(4): 324-328. DOI:10.1016/j.arcmed.2004.04.005
[32]
Lourenço J, Pereira R, Pinto F, et al. Biomonitoring a human population inhabiting nearby a deactivated uranium mine[J]. Toxicology, 2013, 305: 89-98. DOI:10.1016/j.tox.2013.01.011
[33]
Dustov A, Mirojov G, Yakubova M, et al. Uranium mine proximity, immune function, and Helicobacter pylori infection in Tajikistan[J]. J Toxicol Environ Health A, 2013, 76(22): 1261-1268. DOI:10.1080/15287394.2013.836694
[34]
Pérez-de-Heredia F, Gómez-Martínez S, Diaz LE, et al. Influence of sex, age, pubertal maturation and body mass index on circulating white blood cell counts in healthy European adolescents-the HELENA study[J]. Eur J Pediatr, 2015, 174(8): 999-1014. DOI:10.1007/s00431-015-2497-5
[35]
Dodd KC, Menon M. Sex bias in lymphocytes: Implications for autoimmune diseases[J]. Front Immunol, 2022, 13: 945762. DOI:10.3389/fimmu.2022.945762
[36]
Li K, Li W, Jia Y, et al. Long-term immune effects of high-level natural radiation on Yangjiang inhabitants in China[J]. Int J Radiat Biol, 2019, 95(6): 764-770. DOI:10.1080/09553002.2019.1572250
[37]
Arosio B, Ferri E, Mari D, et al. The influence of inflammation and frailty in the aging continuum[J]. Mech Ageing Dev, 2023, 215: 111872. DOI:10.1016/j.mad.2023.111872
[38]
Wannamethee SG, Lowe GD, Shaper AG, et al. Associations between cigarette smoking, pipe/cigar smoking, and smoking cessation, and haemostatic and inflammatory markers for cardiovascular disease[J]. Eur Heart J, 2005, 26(17): 1765-1773. DOI:10.1093/eurheartj/ehi183
[39]
Hansen LK, Grimm RH Jr, Neaton JD. The relationship of white blood cell count to other cardiovascular risk factors[J]. Int J Epidemiol, 1990, 19(4): 881-888. DOI:10.1093/ije/19.4.881
[40]
Johannsen A, Susin C, Gustafsson A. Smoking and inflammation: evidence for a synergistic role in chronic disease[J]. Periodontol 2000, 2014, 64(1): 111-26. DOI:10.1111/j.1600-0757.2012.00456.x
[41]
Feng D, Liu T, Su DF, et al. The association between smoking quantity and hypertension mediated by inflammation in Chinese current smokers[J]. J Hypertens, 2013, 31(9): 1798-1805. DOI:10.1097/HJH.0b013e328362c21a
[42]
Wei JN, Li HY, Sung FC, et al. Obesity and clustering of cardiovascular disease risk factors are associated with elevated plasma complement C3 in children and adolescents[J]. Pediatr Diabetes, 2012, 13(6): 476-483. DOI:10.1111/j.1399-5448.2012.00864.x
[43]
Herishanu Y, Rogowski O, Polliack A, et al. Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia[J]. Eur J Haematol, 2006, 76(6): 516-520. DOI:10.1111/j.1600-0609.2006.00658.x
[44]
Furuncuo Aǧ lu Y, Tulgar S, Dogan AN, et al. How obesity affects the neutrophil/lymphocyte and platelet/lymphocyte ratio, systemic immune-inflammatory index and platelet indices: a retrospective study[J]. Eur Rev Med Pharmacol Sci, 2016, 20(7): 1300-1306.
[45]
Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity[J]. Am J Physiol Cell Physiol, 2021, 320(3): C375-C391. DOI:10.1152/ajpcell.00379.2020
[46]
国家卫生和计划生育委员会. WS/T 440-2014核电站周围居民健康调查规范[S]. 北京: 中国标准出版社, 2014.
National Health and Family Planning Commission of the People's Republic of China. WS/T 440-2014 Norms for health surveys of residents around nuclear power plants[S]. Beijing: Standards Press of China, 2014.