2. 山西医科大学第一医院第一临床医学院肿瘤科,太原 030001
2. Department of Medical Oncology, First Hospital and First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China
局部进展期直肠癌(locally advanced rectal cancer,LARC)是指cT3~4/N+且M0期直肠癌,传统的标准治疗方案是术前长程同步放化疗(long-course chemoradiotherapy,LCRT)或短程放疗(short-course radiotherapy,SCRT)后行全直肠系膜切除术(total mesorectal excision,TME)及辅助化疗[1-2]。新辅助治疗可显著降低肿瘤分期、提高R0切除率与保肛率(约为28.8%),然而,病理完全缓解率(pathological complete response,pCR)仅为10%~15%,且有20%~30%的患者出现远处转移[3]。如何进一步提高pCR率和保肛率是探索的目标。全程新辅助治疗(total neoadjuvant therapy,TNT)是一种新的强化术前治疗强度的治疗策略,其将全部或部分的辅助化疗前移至术前阶段,同时延长了放疗结束至手术的间隔时间,可提高pCR率,近年来已逐渐成为LARC新的标准治疗。STELLAR试验研究表明,LARC患者接受TNT治疗方案后,相比传统方案pCR率更高(29.9% vs. 14.9%),这表明接受TNT治疗的LARC患者有着更好的肿瘤退缩[4]。Zhao等[5]和Kong等[6]也报道了相似的结论。然而pCR率仍有待进一步提高。
近年来,免疫治疗在多种恶性肿瘤治疗中取得了巨大成功,成为癌症治疗的重要手段,且临床和基础研究提示放疗与免疫治疗存在协同增效效应。在新辅助放疗的基础上联合使用免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)是否可以进一步提高LARC患者的pCR率和保肛率成为研究热点,本文就该方面的研究进展进行综述。
二、ICIs在直肠癌中的发展 1、ICIs在MSI-H/dMMR亚型转移性结直肠癌中的进展2015年,Le等[7]报道,微卫星高度不稳定性(microsatellite instability-high,MSI-H)/错配修复蛋白缺陷(defective mismatch repair,dMMR)亚型的转移性结直肠癌患者能从ICIs中显著获益,研究结果显示,在41例接受帕博利珠单抗治疗的晚期结直肠癌患者中,MSI-H /dMMR亚型患者的客观缓解率(objective response rate,ORR)为40%,无进展生存率(progression-free survival,PFS)为78%,与传统治疗方法相比ORR提高了7%,提示MSI-H/dMMR亚型结直肠癌是免疫治疗优势人群,由此开启了ICIs用于MSI-H/dMMR晚期直肠癌免疫治疗的新时代。
在MSI-H /dMMR亚型转移性结直肠癌一线治疗中,Ⅲ期临床研究KEYNOTE-177比较了帕博利珠单抗单药免疫治疗与标准治疗(mFOLFOX6或FOLFIRI±贝伐珠单抗或西妥昔单抗)的疗效差异,结果显示免疫治疗组的ORR为43.8%,较标准一线治疗提高了10.7%,中位PFS翻倍,且安全性更高,该研究确立了帕博利珠单抗治疗可以作为dMMR/MSI-H转移性结直肠癌的一线标准治疗[8]。此后,多项研究均发现,ICIs单药免疫治疗在MSI-H/dMMR直肠癌患者的治疗具有较高的缓解率以及良好的安全性[9-13]。
Checkmate-142临床研究[14]报道了纳武利尤单抗和伊匹木单抗双药免疫治疗(双免)在MSI-H/dMMR转移性结直肠癌的结果,中位随访时间13.4个月,ORR为55%,12周的疾病控制率(disease control rate,DCR)为80%,9、12个月的PFS率分别为76%和71%,总生存率(overall survival,OS)分别为87%和85%。3~4级不良事件(adverse events,AEs)的发生率为32%。此外,Lenz等[15]评估纳武利尤单抗+低剂量的伊匹木单抗的ICIs双药联合在MSI-H/dMMR转移性结直肠癌一线治疗中的价值,中位随访时间为29个月,结果显示ORR达69%,DCR为84%,3~4级AEs的发生率为22%,安全性更高,其最低随访时间为24.2个月,中位PFS和中位OS分别为74%和79%。该研究表明纳武利尤单抗加低剂量伊匹木单抗显示出强大和持久的临床疗效,且安全性优于常规治疗。上述研究提示,双免治疗的疗效优于单免治疗。
总之,对于MSI-H/dMMR转移性结直肠癌,ICIs单药或双药治疗优于传统的化疗±靶向治疗。
2、ICIs在MSI-H/dMMR非转移性直肠癌中的进展既往,无远处转移的结直肠癌,主要治疗方式为根治性手术或新辅助放化疗(neoadjuvant chemoradiotherapy,nCRT)后行根治性手术。2020年NICHE-1研究报告了纳武利尤单抗+伊匹木单抗双免药物用于Ⅰ~Ⅲ期非转移性结肠癌患者的新辅助治疗的疗效,结果显示MSI-H/dMMR组的主要病理缓解(major pathological remission,MPR)率达到95%,而微卫星稳定(microsatellite stability,MSS)/错配修复无缺失(proficient mismatch repair,pMMR)组仅为20%;MSI-H/dMMR组的pCR率高达60%,远高于传统的新辅助治疗[16]。
Cercek等[17]对12例MSI-H/dMMR亚型的LARC患者先进行9个周期多塔利单抗治疗,若评效为临床完全缓解(clinical complete response,cCR),则采取等待观察策略,反之行同步放化疗(concurrent chemoradiotherapy,CCRT)治疗,若CCRT后达到cCR也采取等待观察策略。中位随访1年,研究结果显示12例患者仅在ICIs治疗后就全部达到cCR,无≥3级AEs发生。该研究提示,MSI-H/dMMR型的LARC对ICIs高度敏感,该部分人群可能无需CCRT和手术则可治愈。PICC研究是一项对比ICIs单独或联合COX-2抑制剂用于MSI-H/dMMR非转移性直肠癌术前新辅助治疗的前瞻性临床试验,该研究共纳入了34例dMMR/MSI-H局部进展期结直肠癌患者,并将其随机分为特瑞普利单抗单药组(17例)和特瑞普利单抗+塞来昔布组(17例),结果显示,特瑞普利单抗单药组的pCR率为65%,加用塞来昔布提高了pCR率,达88%,且未提高不良反应[18]。Wang等[19]的研究发现,对于使用ICIs达到cCR的dMMR/MSI-H LARC患者,采用免疫治疗是根治性治疗的一种替代选择。
上述研究显示,对于MSI-H/dMMR类型的LARC,术前新辅助免疫治疗的疗效显著优于nCRT。NCCN指南自2022年V1版推荐,对于MSI-H/dMMR的非转移性直肠癌患者,ICIs可以替代LCRT或SCRT作为术前新辅助或根治性治疗。
三、ICIs与放疗联合的可能机制与基础研究放疗作为一种局部治疗手段,除了对肿瘤细胞具有直接的杀伤作用外,还可产生一系列免疫介导的抗肿瘤效应,这提示放疗与ICIs免疫治疗联合可能具有协同增效作用[20-25]。
研究显示,放疗可促进损伤相关分子模式(damage associated molecular patterns,DAMPs)、新生抗原和促炎细胞因子(如IFN-γ、IL-1和IL-6)等的释放,上调抗原呈递基因等免疫调节基因的表达,导致树突状细胞(dendritic cells,DCs)的募集和激活,从而导致肿瘤细胞发生免疫原性细胞死亡。DCs迁移到淋巴结后,参与了T淋巴细胞的启动和激活,然后T淋巴细胞与其他免疫细胞一起被募集到肿瘤部位。放疗还可以在其他方面导致肿瘤微环境(tumour microenvironment,TME)发生改变,包括巨噬细胞表型由M2向M1转换、肿瘤脉管系统的调节以及细胞代谢改变等。总之,上述事件均增强了对肿瘤细胞的识别和杀伤[26]。除此之外,放疗还可使PD1、PD-L1和CTLA-4等免疫检查点的表达增加[27]。在激活免疫系统的过程中,放疗还可通过环状GMP-AMP合成酶刺激干扰素基因等上调肿瘤细胞上PD-L1的表达,然后抑制细胞毒性T淋巴细胞的功能[28]。
在这种情况下,ICIs的应用可能会进一步增强的适应性抗肿瘤免疫效益。放疗后免疫刺激信号和新抗原的释放将诱导TME发生变化,促进抗肿瘤免疫反应,而ICIs等全身免疫刺激药物可进一步增强这种免疫反应[29]。研究表明,放疗可以诱导肿瘤浸润性淋巴细胞(tumor-infiltrating lymphocytes,TILs)的增加,以及细胞程序性死亡-配体1(programmed cell death 1 ligand 1,PD-L1)、T细胞免疫球蛋白和ITIM结构域蛋白(T cell immunoreceptor with Ig and ITIM domains,TIGIT)的表达上调,联合抗PD-L1和抗TIGIT治疗可以提高抗肿瘤治疗效果[30-31]。而另一项对小鼠结肠癌移植瘤模型的临床前研究表明,给予10 Gy/5次剂量的放疗可促进浸润CD8+ T细胞产生干扰素(interferon-γ,IFN-γ),导致肿瘤细胞表达PD-L1[32]。Deng等[33]发现使用单次12 Gy的高剂量放疗联合ICIs治疗可刺激CD8+ T细胞分泌肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α),进而减少了髓系源性抑制细胞的局部积累。
放化疗与ICIs联合使用时间顺序的不同可能会导致联合治疗效果的差异。Dovedi等[32]比较了在放疗期间同期使用ICIs和放疗结束后7天再给予ICIs的两种联合方案,结果显示前者疗效更佳。而另外一项研究则提示,在放化疗开始前7天给予ICIs免疫治疗,比放化疗开始后再使用ICIs的联合治疗效果更好[34]。在放化疗基础上联合使用ICIs时,如何选择ICIs给药时间点还有待进一步研究探索。
综上所述,放化疗产生的免疫介导的抗肿瘤效应主要包括增强肿瘤抗原和相关炎症因子的释放,进而促进免疫细胞的启动和激活,增加肿瘤浸润T淋巴细胞的密度,促进T细胞识别肿瘤细胞和增强抗肿瘤效应。然而,放疗的免疫调节作用是一把双刃剑,不仅增强了全身抗肿瘤免疫反应,有时还在一定程度上导致免疫抑制[35],需要更多的基础试验去探索放化疗联合ICIs免疫治疗对TME的影响。
四、术前新辅助治疗联合ICIs用于MSS/pMMR亚型LARC治疗的研究进展在直肠癌患者中,MSI-H/dMMR亚型的患者是免疫优势人群,但是该亚型患者在全部直肠癌患者中占比不足10%,绝大部分患者(约90%)为MSS/pMMR亚型[36-37],这类患者属于对ICIs免疫治疗不敏感的人群[38]。近年来,越来越多的研究显示,放疗可以调节肿瘤免疫微环境,从而提高ICIs治疗效果。对于MSS/pMMR亚型LARC患者在进行新辅助放疗后,是否也存在放疗增敏免疫治疗效应,从而提高pCR率值得深入研究,目前有多项研究进行了相关探索。
1、LCRT联合ICIs在LARC中的研究进展(1) 序贯联合治疗:VOLTAGE‐A、NSABP FR‐2和PANDORA等3项Ⅱ期研究探索了在LCRT后序贯使用ICIs单药治疗LARC,分别在LCRT后给予5个周期纳武利尤单抗、4个周期度伐利尤单抗和3个周期度伐利尤单抗巩固治疗,3项研究报道的pCR率分别为30%、22.2%、32.7%,均高于传统的nCRT[39-41]。PANDORA研究相较于NSABP FR‐2试验显示出更高的pCR率,可能与放疗结束后接受手术的时间延长有关。在安全性方面,PANDORA研究中有7.3%患者发生了3级AEs,无4级AEs发生;此外,VOTAGE-A研究结果显示,在MSS/pMMR LARC患者中有30%(11/37)达到了pCR,而在MSI-H/dMMR LARC患者中有60%(3/5)达到了pCR。亚组分析显示,治疗前肿瘤细胞PD‐L1阳性比例分数≥1%是免疫治疗有效的一个重要预测因素。以上研究结果提示,在LCRT基础上序贯进行ICIs免疫治疗可以提高pCR率。
(2) 同期联合治疗:AVANA和R-IMMUE研究则是在LCRT期间同步使用ICIs免疫治疗,在LCRT期间和结束后分别共进行了6个周期的阿维鲁单抗和4个周期的阿替利珠单抗,pCR率分别为23%、24%[42-43]。这两项研究结果中的pCR率低于前述的序贯联合治疗。另外,CCRT-PD1-LARC研究探索了对26例MSS/pMMR型的LARC在进行CCRT时,同步给予3个周期替雷利珠单抗免疫治疗,其中有2人因出现3级ICIs相关性结肠炎和1级甲状腺功能亢进,仅进行了2个周期的替雷利珠单抗免疫治疗,而后均行TME手术。中期结果显示,26例患者中有50%的患者达到pCR,肛门保留率为88.5%(23/26)。关于安全性,该研究放射性肠炎的发生率约为38.5%[44]。Yue等[45]进行了一项荟萃分析,纳入了8项临床试验中204名接受CCRT联合ICIs治疗的MSS/pMMR亚型LARC患者,结果显示,pCR率为33%,括约肌保留率为86%,R0切除率为83%,其中2项研究的MPR为33%,cCR率为30%。这一结果表明LCRT联合ICIs治疗对MSS/pMMR LARC患者近期疗效显著,相较于传统的LCRT治疗,可以显著提高pCR率和括约肌保留率。
另外,Zhou等[46]探索了在LCRT基础上同步给予2个周期信迪利单抗免疫治疗,并在LCRT结束后继续行6个周期的CAPOX/Cape化疗加2个周期信迪利单抗治疗。结果显示,cCR率为43.2%,pCR率达到20%,综合CR率为52.2%,肛门保留率为95.5%。这一效果明显优于传统标准治疗,也高于TNT治疗策略,可能与该研究中早期直肠癌患者占比较高(约69%)有关。此外,3~4级不良反应发生率为17.4%,与单纯LCRT相比并无明显提高。BFH-CCRTPD研究对20例MSS/pMMR患者进行新辅助LCRT联合同步3个周期替雷利珠单抗,在治疗过程中观察到2例免疫相关不良事件的发生,分别是3级腹泻和1级白癜风;12例患者行TME手术,保肛率和R0切除率均为100%,且pCR率显著提高,达到58.3%(7/12),ORR达到100%,其中1例患者发生吻合口漏(8.3%),该治疗模式为直肠癌治疗研究提供了新希望[47]。
上述研究提示,新辅助LCRT联合ICIs免疫治疗的pCR率明显高于传统标准治疗,高于或接近TNT治疗,展示了提高疗效和器官保留可能性的潜力,但均为Ⅱ期研究,仍有待进一步的Ⅲ期随机对照试验进一步验证。
2、新辅助SCRT联合ICIs在LARC中的研究进展STELLAR、RAPIDO研究表明,SCRT在中低位直肠癌的治疗中具有降低免疫功能受损的效果,且SCRT加巩固化疗的模式在治疗效果上不亚于LCRT[4, 48]。那么,在SCRT基础上联合免疫治疗是否能进一步提高疗效呢?
Lin等[49]对LARC患者给予SCRT后序贯2个周期CAPOX+卡瑞利珠单抗的巩固治疗,结果显示,pCR率提高至48.1%(13/27),≥3级AEs发生率为26.7%,放射性直肠炎的发生率为70%。此外,Averectal研究对44名MSS/pMMR LARC患者在SCRT后序贯进行了6个周期mFOLFOX-6方案化疗联合阿维鲁单抗免疫治疗,中位随访时间13个月。结果显示,pCR率为37.5%(15/40),MPR率为67.5%,共观察到31项≥3级AEs,但均与免疫治疗无关[50]。这些研究结果表明,放疗联合免疫治疗在提高pCR率方面显示出潜力。
复旦大学正在进行的TORCH研究探索了免疫治疗与SCRT联合治疗的不同顺序模式,该研究将招募的患者分为巩固组与诱导组,巩固组在SCRT后序贯进行6个周期CAPOX化疗联合特瑞普利单抗免疫治疗,诱导组则在SCRT前后各给予2个周期诱导治疗和4个周期巩固治疗。单中心初步研究结果显示,巩固组的cCR率为55.9%(19/34),达部分缓解的有15例(包括2例near-cCR);诱导组的cCR率为35.7%(10/28),达部分缓解的有18例(包括2例near-cCR)。两组共有32例患者接受TME手术,其中有18例达到pCR,约为56.2%,其中巩固组pCR率约为47.3%(9/19),诱导组pCR率约为69.2%(9/13)。两组总体CR率(cCR+pCR)为58.1%(36/62)[51]。这一研究表明在SCRT基础上联合ICIs可进一步提高了CR率,且巩固治疗组的cCR率可能优于诱导治疗组。
综上所述,新辅助SCRT放疗基础上,联合巩固或诱导化疗+ICIs治疗,可以提高pCR率。但最佳联合模式以及放疗分割模式对疗效的影响,还有待进一步探索。目前正在进行的REGINA研究在新辅助SCRT前后联合使用纳武利尤单抗和瑞戈非尼的靶免治疗,目前研究结果尚未公布[52]。Zheng等[53]创新性地提出了一种新的LCRT联合ICIs治疗策略,以21 d为周期,第1天给予CAPOX联合替雷利珠单抗免疫治疗,共6个周期,每个周期的第7天给予高于常规剂量的LCRT(35 Gy/5次),随后行TME手术治疗,研究结果尚未发表。
3、TNT模式联合ICIs在LARC中的研究进展NRG-GI002试验是一项Ⅱ期随机对照试验,MSS/pMMR型LARC患者被1∶1随机分配至TNT组和TNT+ICIs联合组。TNT组方案为:FOLFOX方案新辅助化疗6个周期+LCRT+手术;TNT+ICIs组方案为:FOLFOX新辅助方案化疗6个周期+LCRT同步帕博利珠单抗6周期+手术。研究结果显示,TNT+ICIs组的pCR率为31.9%,而TNT组为29.4%,两组的cCR率分别为13.9%和13.6%,差异无统计学意义。这一研究提示,在诱导化疗模式的TNT基础上联合ICIs治疗,并不能提高pCR率[54]。李英杰等[55]回顾性分析了24例接受TNT联合ICIs治疗的pMMR/MSS型LARC患者,结果显示,20例手术的患者中有6例达到pCR(30%),4例拒绝手术的患者中有3例达到cCR,未观察到严重的不良反应,这一研究也提示pCR值未得到显著提高,但cCR+pCR率仍相对较高。
此外,在TNT中化疗干预的时间对治疗结果也有一定的影响。PKUCH 04研究探索了在LCRT前后分别给予3个周期和2个周期的卡瑞丽珠单抗+CAPOX化疗联合免疫治疗,共25例MSS/pMMR型LARC患者纳入分析,21例接受了手术治疗的患者中,7例(33.3%)为pCR,另有4例患者达到了cCR或近cCR而采取了等待观察策略。该研究中观察到的3级AEs主要有淋巴细胞减少(24%)、腹泻(8%)以及血小板减少(4%),未观察到4级或5级AEs[56]。与单独TNT模式相比,pCR率无显著改善。
总之,从上述几项研究来看,在TNT治疗模式上联合使用ICIs并未能进一步提高pCR率,其原因尚有待进一步探讨。另外,巩固化疗或诱导化疗的不同的TNT模式或者在TNT不同时间阶段加入ICIs是否能明显提高疗效,值得深入探索研究。
五、小结及展望目前的研究表明,不论是在LCRT还是SCRT的基础上联合免疫治疗,都会提高LARC患者的疗效,其pCR率可得到明显提高。初步来看,SCRT联合免疫治疗可能会优于LCRT联合免疫治疗。2023年版中国临床肿瘤学会结直肠癌诊疗指南在LARC诊疗方案注释中指出,对于有肿瘤退缩或器官保留需求的患者,可在MDT讨论后采用新辅助放化疗联合免疫治疗的方案或者参加类似的临床研究。这些研究多为Ⅱ期临床试验,尚不足以完全改变现有的标准治疗模式,还需后续的Ⅲ期随机对照试验提供进一步的研究证据。
另外,放疗、化疗和免疫治疗之间的最佳顺序仍不确定,不同的顺序可能会导致不同的治疗效果,仍需进一步的研究。此外,放疗联合ICIs治疗中,最佳放疗剂量和分割方案仍不清楚,也有待进一步探索。NCCN指南自2022年V1版开始,推荐对于所有的MSS/pMMR型LARC的首选治疗方案均为TNT。而在TNT模式基础上联用ICIs能否明显提高pCR率,目前还缺乏证据。传统模式的新辅助治疗联合ICIs与TNT模式孰优孰劣,TNT模式基础上联合ICIs通过优化使用顺序能否进一步提高疗效,这些问题也有待进一步研究探索。
利益冲突 所有作者声明无利益冲突
作者贡献声明 侯双双、马娟负责文献检索及论文起草;陈路锋负责论文构思及审阅;张革红、李险峰负责审核校对
[1] |
Glynne-Jones R, Wyrwicz L, Tiret E, et al. Rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2017, 28(suppl_4): iv22-iv40. DOI:10.1093/annonc/mdx224 |
[2] |
Liu S, Jiang T, Xiao L, et al. Total neoadjuvant therapy (TNT) versus standard neoadjuvant chemoradiotherapy for locally advanced rectal cancer: A systematic review and meta-analysis[J]. Oncologist, 2021, 26(9): e1555-e1566. DOI:10.1002/onco.13824 |
[3] |
Ma B, Gao P, Wang H, et al. What has preoperative radio(chemo)therapy brought to localized rectal cancer patients in terms of perioperative and long-term outcomes over the past decades? A systematic review and meta-analysis based on 41, 121 patients[J]. Int J Cancer, 2017, 141(5): 1052-1065. DOI:10.1002/ijc.30805 |
[4] |
Jin J, Tang Y, Hu C, et al. Multicenter, randomized, phase Ⅲ trial of short-term radiotherapy plus chemotherapy versus long-term chemoradiotherapy in locally advanced rectal cancer (STELLAR): The final reports[J]. J Clin Oncol, 2022, 40(15): 1681-1692. DOI:10.1200/JCO.21.01667 |
[5] |
Zhao Y, Zhu J, Yang B, et al. Retrospective study of total neoadjuvant therapy for locally advanced rectal cancer[J]. Future Oncol, 2022, 18(6): 691-700. DOI:10.2217/fon-2021-0644 |
[6] |
Kong JC, Soucisse M, Michael M, et al. Total neoadjuvant therapy in locally advanced rectal cancer: A systematic review and metaanalysis of oncological and operative outcomes[J]. Ann Surg Oncol, 2021, 28(12): 7476-7486. DOI:10.1245/s10434-021-09837-8 |
[7] |
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520. DOI:10.1056/NEJMoa1500596 |
[8] |
Andre T, Amonkar M, Norquist JM, et al. Health-related quality of life in patients with microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer treated with first-line pembrolizumab versus chemotherapy (KEYNOTE-177): an open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2021, 22(5): 665-677. DOI:10.1016/S1470-2045(21)00064-4 |
[9] |
Maio M, Ascierto PA, Manzyuk L, et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase Ⅱ KEYNOTE-158 study[J]. Ann Oncol, 2022, 33(9): 929-938. DOI:10.1016/j.annonc.2022.05.519 |
[10] |
Le DT, Kim TW, Van Cutsem E, et al. Phase Ⅱ open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164[J]. J Clin Oncol, 2020, 38(1): 11-19. DOI:10.1200/JCO.19.02107 |
[11] |
Chakrabarti S, Grewal US, Vora KB, et al. Outcome of patients with early-stage mismatch repair deficient colorectal cancer receiving neoadjuvant immunotherapy: A systematic review[J]. JCO Precis Oncol, 2023, 7: e2300182. DOI:10.1200/PO.23.00182 |
[12] |
Chen G, Jin Y, Guan WL, et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study[J]. Lancet Gastroenterol Hepatol, 2023, 8(5): 422-431. DOI:10.1016/S2468-1253(22)00439-3 |
[13] |
Yang R, Wu T, Yu J, et al. Locally advanced rectal cancer with dMMR/MSI-H may be excused from surgery after neoadjuvant anti-PD-1 monotherapy: a multiple-center, cohort study[J]. Front Immunol, 2023, 14: 1182299. DOI:10.3389/fimmu.2023.1182299 |
[14] |
Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer[J]. J Clin Oncol, 2018, 36(8): 773-779. DOI:10.1200/JCO.2017.76.9901 |
[15] |
Lenz HJ, Van Cutsem E, Luisa Limon M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase Ⅱ checkMate 142 study[J]. J Clin Oncol, 2022, 40(2): 161-170. DOI:10.1200/JCO.21.01015 |
[16] |
Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576. DOI:10.1038/s41591-020-0805-8 |
[17] |
Cercek A, Lumish M, Sinopoli J, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer[J]. N Engl J Med, 2022, 386(25): 2363-2376. DOI:10.1056/NEJMoa2201445 |
[18] |
Hu H, Kang L, Zhang J, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(1): 38-48. DOI:10.1016/S2468-1253(21)00348-4 |
[19] |
Wang QX, Xiao BY, Cheng Y, et al. Anti-PD-1-based immunotherapy as curative-intent treatment in dMMR/MSI-H rectal cancer: A multicentre cohort study[J]. Eur J Cancer, 2022, 174: 176-184. DOI:10.1016/j.ejca.2022.07.016 |
[20] |
Meric-Bernstam F, Larkin J, Tabernero J, et al. Enhancing anti-tumour efficacy with immunotherapy combinations[J]. Lancet, 2021, 397(10278): 1010-1022. DOI:10.1016/S0140-6736(20)32598-8 |
[21] |
Hellevik T, Berzaghi R, Lode K, et al. Immunobiology of cancer-associated fibroblasts in the context of radiotherapy[J]. J Transl Med, 2021, 19(1): 437. DOI:10.1186/s12967-021-03112-w |
[22] |
Donlon NE, Power R, Hayes C, et al. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity[J]. Cancer Lett, 2021, 502: 84-96. DOI:10.1016/j.canlet.2020.12.045 |
[23] |
Wu M, Liu J, Wu S, et al. Systemic immune activation and responses of irradiation to different metastatic sites combined with immunotherapy in advanced non-small cell lung cancer[J]. Front Immunol, 2021, 12: 803247. DOI:10.3389/fimmu.2021.803247 |
[24] |
Balázs K, Kis E, Badie C, et al. Radiotherapy-induced changes in the systemic immune and inflammation parameters of head and neck cancer patients[J]. Cancers (Basel), 2019, 11(9): 1324. DOI:10.3390/cancers11091324 |
[25] |
Takahashi J, Nagasawa S. Immunostimulatory effects of radiotherapy for local and systemic control of melanoma: A review[J]. Int J Mol Sci, 2020, 21(23): 9324. DOI:10.3390/ijms21239324 |
[26] |
Corrò C, Dutoit V, Koessler T. Emerging trends for radio-immunotherapy in rectal cancer[J]. Cancers (Basel), 2021, 13(6): 1374. DOI:10.3390/cancers13061374 |
[27] |
Billiard F, Buard V, Benderitter M, et al. Abdominal γ-radiation induces an accumulation of function-impaired regulatory T cells in the small intestine[J]. Int J Radiat Oncol Biol Phys, 2011, 80(3): 869-876. DOI:10.1016/j.ijrobp.2010.12.041 |
[28] |
Du SS, Chen GW, Yang P, et al. Radiation therapy promotes hepatocellular carcinoma immune cloaking via PD-L1 upregulation induced by cGAS-STING activation[J]. Int J Radiat Oncol Biol Phys, 2022, 112(5): 1243-1255. DOI:10.1016/j.ijrobp.2021.12.162 |
[29] |
Tang C, Wang X, Soh H, et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors?[J]. Cancer Immunol Res, 2014, 2(9): 831-838. DOI:10.1158/2326-6066.CIR-14-0069 |
[30] |
Grapin M, Richard C, Limagne E, et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination[J]. J Immunother Cancer, 2019, 7(1): 160. DOI:10.1186/s40425-019-0634-9 |
[31] |
Zhao K, Jiang L, Si Y, et al. TIGIT blockade enhances tumor response to radiotherapy via a CD103+ dendritic cell-dependent mechanism[J]. Cancer Immunol Immunother, 2023, 72(1): 193-209. DOI:10.1007/s00262-022-03227-z |
[32] |
Dovedi SJ, Adlard AL, Lipowska-Bhalla G, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade[J]. Cancer Res, 2014, 74(19): 5458-5468. DOI:10.1158/0008-5472.CAN-14-1258 |
[33] |
Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice[J]. J Clin Invest, 2014, 124(2): 687-695. DOI:10.1172/JCI67313 |
[34] |
Filatenkov A, Baker J, Strober S. Disruption of evasive immune cell microenvironment in tumors reflects immunity induced by radiation therapy[J]. Oncoimmunology, 2016, 5(2): e1072673. DOI:10.1080/2162402X.2015.1072673 |
[35] |
Lin L, Kane N, Kobayashi N, et al. High-dose per fraction radiotherapy induces both antitumor immunity and immunosuppressive responses in prostate tumors[J]. Clin Cancer Res, 2021, 27(5): 1505-1515. DOI:10.1158/1078-0432.CCR-20-2293 |
[36] |
Papke DJ Jr, Yurgelun MB, Noffsinger AE, et al. Prevalence of mismatch-repair deficiency in rectal adenocarcinomas[J]. N Engl J Med, 2022, 387(18): 1714-1716. DOI:10.1056/NEJMc2210175 |
[37] |
Cercek A, Lumish M, Sinopoli J, et al. PS4-2 PD-1 blockade as curative intent therapy in mismatch repair deficient locally advanced rectal cancer[J]. Ann Oncol, 2023, 34: S1381. DOI:10.1016/j.annonc.2023.09.112 |
[38] |
Li W, Li H, Liu R, et al. Comprehensive analysis of the relationship between RAS and RAF mutations and MSI status of colorectal cancer in northeastern China[J]. Cell Physiol Biochem, 2018, 50(4): 1496-1509. DOI:10.1159/000494649 |
[39] |
Grassi E, Zingaretti C, Petracci E, et al. Phase Ⅱ study of capecitabine-based concomitant chemoradiation followed by durvalumab as a neoadjuvant strategy in locally advanced rectal cancer: the PANDORA trial[J]. ESMO Open, 2023, 8(5): 101824. DOI:10.1016/j.esmoop.2023.101824 |
[40] |
Bando H, Tsukada Y, Ito M, et al. Novel immunological approaches in the treatment of locally advanced rectal cancer[J]. Clin Colorectal Cancer, 2022, 21(1): 3-9. DOI:10.1016/j.clcc.2021.10.001 |
[41] |
George TJ, Yothers G, Jacobs SA, et al. Phase Ⅱ study of durvalumab following neoadjuvant chemoRT in operable rectal cancer: NSABP FR-2[J]. J Clin Oncol, 2022, 40(4_suppl): 99. DOI:10.1200/JCO.2022.40.4_suppl.099 |
[42] |
Salvatore L, Bensi M, Corallo S, et al. O-12 Phase Ⅱ study of preoperative chemoradiotherapy plus avelumab in patients with locally advanced rectal cancer: The AVANA study[J]. Ann Oncol, 2021, 32: S223. DOI:10.1016/j.annonc.2021.05.016 |
[43] |
Carrasco J, Schröder D, Sinapi I, et al. 397P R-IMMUNE interim analysis: A phase Ⅰb/Ⅱ study to evaluate safety and efficacy of atezolizumab combined with radio-chemotherapy in a preoperative setting for patients with localized rectal cancer[J]. Ann Oncol, 2021, 32: S537. DOI:10.1016/j.annonc.2021.08.919 |
[44] |
Gao J, Zhang X, Yang Z, et al. Interim result of phase Ⅱ, prospective, single-arm trial of long-course chemoradiotherapy combined with concurrent tislelizumab in locally advanced rectal cancer[J]. Front Oncol, 2023, 13: 1057947. DOI:10.3389/fonc.2023.1057947 |
[45] |
Yue Y, Cheng M, Xi X, et al. Can neoadjuvant chemoradiotherapy combined with immunotherapy benefit patients with microsatellite stable locally advanced rectal cancer? a pooled and integration analysis[J]. Front Oncol, 2023, 13: 1280995. DOI:10.3389/fonc.2023.1280995 |
[46] |
Zhou L, Yu G, Shen Y, et al. The clinical efficacy and safety of neoadjuvant chemoradiation therapy with immunotherapy for the organ preservation of ultra low rectal cancer: A single arm and open label exploratory study[J]. J Clin Oncol, 2022, 40(16_suppl): e15603. DOI:10.1200/JCO.2022.40.16_suppl.e15603 |
[47] |
Yao H, Yang Z, Gao J, et al. Safety and efficacy evaluation of long course neoadjuvant chemoradiotherapy plus tislelizumab followed by total mesorectal excision for locally advanced rectal cancer: Short-term results of a multicenter, phase Ⅱ study[J]. J Clin Oncol, 2022, 40(16_suppl): e15599. DOI:10.1200/JCO.2022.40.16_suppl.e15599 |
[48] |
Bahadoer RR, Dijkstra EA, van Etten B, et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22(1): 29-42. DOI:10.1016/S1470-2045(20)30555-6 |
[49] |
Lin Z, Cai M, Zhang P, et al. Phase Ⅱ, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer[J]. J Immunother Cancer, 2021, 9(11): e003554. DOI:10.1136/jitc-2021-003554 |
[50] |
Shamseddine A, Zeidan YH, Bouferraa Y, et al. SO-30 Efficacy and safety of neoadjuvant short-course radiation followed by mFOLFOX-6 plus avelumab for locally-advanced rectal adenocarcinoma: Averectal study[J]. Ann Oncol, 2021, 32(suppl 3): S215. DOI:10.1016/j.annonc.2021.05.054 |
[51] |
王雅琪, 申丽君, 万觉锋, 等. 短程放疗联合CAPOX和PD-1单抗用于局部进展期直肠癌全程新辅助治疗的前瞻性多中心随机二期临床研究(TORCH)——单中心初步结果分析[J]. 中华胃肠外科杂志, 2023, 26(5): 448-458. Wang YQ, Shen LJ, Wan JF, et al. Short-course radiotherapy combined with CAPOX and PD-1 inhibitor for the total neoadjuvant therapy of locally advanced rectal cancer: the preliminary single-center findings of a prospective, multicentre, randomized phase Ⅱ trial (TORCH)[J]. Chin J Gastrointestinal Surg, 2023, 26(5): 448-458. DOI:10.3760/cma.j.cn441530-20230107-00010 |
[52] |
Bregni G, Senti C, Reina EA, et al. 505TiP REGINA: A phase Ⅱ trial of neoadjuvant regorafenib (rego) in combination with nivolumab (nivo) and short-course radiotherapy (SCRT) in intermediate-risk, stage Ⅱ-Ⅲ rectal cancer (RC)[J]. Ann Oncol, 2021, 32(suppl 5): S579. DOI:10.1016/j.annonc.2021.08.1024 |
[53] |
Zheng R, Wang BS, Li Z, et al. Combining chemotherapy and tislelizumab with preoperative split-course hypofraction radiotherapy for locally advanced rectal cancer: study protocol of a prospective, single-arm, phase Ⅱ trial[J]. BMJ Open, 2023, 13(3): e066976. DOI:10.1136/bmjopen-2022-066976 |
[54] |
Rahma OE, Yothers G, Hong TS, et al. Use of total neoadjuvant therapy for locally advanced rectal cancer: initial results from the pembrolizumab arm of a Phase 2 randomized clinical trial[J]. JAMA Oncol, 2021, 7(8): 1225-1230. DOI:10.1001/jamaoncol.2021.1683 |
[55] |
李英杰, 张丽, 董秋石, 等. 程序性细胞死亡蛋白1抗体联合全程新辅助放化疗治疗高风险局部进展期中低位直肠癌患者的近期结局[J]. 中华胃肠外科杂志, 2021, 24(11): 998-1007. Li YJ, Zhang L, Dong QS, et al. Short-term outcome of programmed cell death protein1 (PD-1) antibody combined with total neoadjuvant chemoradiotherapy in the treatment of locally advanced middle-low rectal cancer with high risk factors[J]. Chin J Gastrointestinal Surg, 2021, 24(11): 998-1007. DOI:10.3760/cma.j.cn441530-20210927-00386 |
[56] |
Wu A, Li Y, Ji D, et al. PKUCH 04 trial: Total neoadjuvant chemoradiation combined with neoadjuvant PD-1 blockade for pMMR/MSS locally advanced middle to low rectal cancer[J]. J Clin Oncol, 2022, 40: 16_suppl-3609. DOI:10.1200/JCO.2022.40.16_suppl.3609 |