恶性肿瘤现已成为全球范围内严重的卫生健康问题。对于恶性肿瘤,主要治疗手段包括手术、放疗、化疗、靶向治疗和免疫治疗等,目前以综合治疗方式为主,但患者预后仍不尽如人意;且目前的放化疗等手段常出现不良反应,降低生活质量、影响肿瘤治疗效果。因此,发展更为精准的治疗手段(即对肿瘤具有更强的靶向性)成为了提高疗效、改善预后的核心问题之一。
硼中子俘获治疗(boron neutron capture therapy, BNCT)是将含硼(10B)化合物注入体内,然后用中子源产生的热中子进行照射的一种精准靶向肿瘤细胞的放疗新技术[1]。由于10B与中子可在细胞局部发生核裂变而产生一个α粒子(4He)和一个7Li粒子,波及范围约5~9 μm(相当于一个细胞直径),因此BNCT理论上能够将高能射线带来的损伤局限在单个细胞内,从而实现单个细胞层面的杀伤及防护[2-3]。
尽管目前BNCT的发展面临多种问题,比如中子源问题、含硼药物的高效递送和可视化等,但随着物理学、化学、生物学等技术的蓬勃发展以及相关设备研发的深入推进[1, 4],各项难题正逐步得到解决,BNCT已进入发展快车道,即将迎来高速发展和推广应用的新阶段。本文针对含硼药物研究进展、BNCT生物学机制、与现有放疗手段的比对以及BNCT临床研究进展等进行综述,以期阐明BNCT部分关键问题的研究现状及其应用前景。
一、含硼药物含硼药物是实现BNCT的基本药物,也是发挥其细胞级别精度优势的一个关键点。10B选择性递送进入肿瘤细胞并在肿瘤细胞中高浓度聚集是实现BNCT精准治疗的核心条件。理想的含硼药物应具备以下特点:10B在肿瘤组织中浓度达到20~35 μg/g,且在中子照射过程中,肿瘤细胞内药物浓度能够维持;肿瘤/正常组织10B浓度比值应为3~5;安全可耐受[5]。第一代含硼药物制剂如硼酸钠和衍生物等,已被证明不符合BNCT临床治疗要求;第二代含硼药物已研发成功并应用,代表药物有4-二羟基硼酰基苯丙氨酸(boronophenylalanine,BPA)和巯基十一碳氢十二硼烷(sulfhydrylborane,BSH), 但仍不十分理想;第三代含硼药物正在加紧研制当中,以期能够达到上述要求,充分发挥BNCT的优势。
1. BPA和BSH:目前批准进行临床试验的二代含硼药物只有BPA和BSH。BPA由结合于单个硼原子的苯丙氨酸构成,因此,硼含量不高,大约5%。BPA由苯丙氨酸和硼原子构成,而肿瘤细胞代谢活跃,BPA可被肿瘤细胞高吸收[6]。由于苯丙氨酸为黑色素前体物质,因此BPA首先用于恶性黑色素瘤;而后续研究发现BPA可在多种肿瘤组织中聚集,故也用于头颈部癌和恶性脑瘤的BNCT治疗[1, 7]。BSH是低分子量化合物,分子量约200,通常含多于10个硼原子[8]。目前BSH已用于恶性脑瘤BNCT治疗[7]。由于BPA和BSH机制不同,BPA在肿瘤中可达较高浓度,对肿瘤杀伤更强、不良反应更小,因此,目前BPA在BNCT中使用更为广泛[9-10]。
2. 新型(三代)含硼药物研发:BPA和BSH在BNCT临床应用中占有一席之地,但二者各有缺点,不能够同时满足前述理想含硼药物的要求,从而无法成为BNCT含硼药物的最佳药剂[8]。因此,多项研究正针对具有更强肿瘤靶向性和特异性的新型含硼药物展开研发和验证。新型含硼药物递送系统有两个主要设想,即主动靶向和被动靶向[6]。主动靶向通过一些特异性分子结合实现,如表皮生长因子受体(epidermal growth factor receptor,EGFR)常在肿瘤细胞高表达,将含硼树枝状聚合物(boronated starburst dendrimer,BSD)与抗EGFR单抗结合而研发的BD-C225,可在高表达EGFR肿瘤细胞中聚集[11-12]。被动靶向则是利用肿瘤血管系统的特点达到药物在肿瘤内聚集的目的。肿瘤中新生血管丰富、血管壁通透性更强,因此一些在正常血管中难以透出的大分子物质可在肿瘤血管中透出而聚集;故在血液中稳定存在的大分子药物可用于被动靶向,即通透性和滞留增强效应(enhanced permeability and retention effect,EPR)[6, 13]。被动靶向利用EPR效应达到促进药物在肿瘤中聚集的效果,利用该原理开发的新型含硼药物种类繁多:硼脂、二硬脂酰硼脂、硼胆固醇和含硼脂质体[14-18];载有BSH的聚合物微胶粒[19]等。除此之外,还有细胞穿透肽偶联含硼化合物[20-22]、氮化硼纳米管[23]等。新型含硼药物相关研究层出不穷,但仍处于初期研究阶段,批准用于临床试验的BNCT含硼药物仍只有BPA和BSH。随着相关研究的深入,更多理想的BNCT含硼药物将逐步出现。
二、BNCT杀伤肿瘤的生物学机制在电离辐射造成的细胞损伤中,DNA的损伤和修复是关键一环。BNCT过程中产生的α粒子和7Li粒子具有高线性能量传递(linear energy transfer,LET),同时BNCT也产生γ射线等低LET射线,因此BNCT造成的DNA损伤属于混合射线损伤,对细胞产生复杂影响[24]。已有研究报道,BNCT引起的DNA损伤和染色体畸变比常规放疗更为严重[25]。一项研究通过体内实验表明,BNCT引起的DNA双链断裂比纯γ射线导致的DNA双链断裂损伤(double stranded breaks,DSBs)更加难以修复,且损伤持续时间更长,这说明BNCT比传统的X射线和γ射线具有更强的损伤效应[26]。有研究利用甲状腺癌细胞系发现,BNCT后细胞主要修复途径为同源重组修复(homologous recombination repair,HRR);而另一项利用黑色素瘤细胞的研究则发现,BNCT后细胞中的非同源末端连接修复(non-homologous end joining,NHEJ)和HRR修复途径均有激活。而人们更期望BNCT造成DSBs的不可修复,这样可增强BNCT的疗效。Kinashi等[27]研究发现,BNCT导致的细胞DSBs很难修复,且照射后的细胞DSB修复能力下降。一项关于肝癌细胞的实验证明,BNCT可通过诱导肝癌细胞出现大量DSBs并发生G2/M期阻滞和凋亡,来抑制肝癌细胞生长[28]。同时,Sun等[29]也发现,BNCT可增强胶质瘤细胞中细胞色素C释放、激活含半胱氨酸的天冬氨酸蛋白水解酶9(caspase-9),进而促进细胞凋亡。
p53抑癌基因对于细胞基因修复非常重要。Fujita等[30]通过实验证明,p53基因突变的肿瘤细胞对BNCT更加耐受,因为突变型细胞中G1周期阻滞缺乏、凋亡受抑。另外,恶性肿瘤中存在的静止期细胞,包括乏氧细胞、肿瘤干细胞(cancer stem cells,CSCs)等,均可引起肿瘤的治疗耐受[31]。因此,BNCT是否能够抑制静止期细胞对于其疗效有重要影响。一项研究利用胶质瘤干细胞样细胞(glioma stem-like cells,GSC)验证BNCT的影响,结果发现BNCT可靶向杀伤GSCs,有效抑制恶性胶质瘤[32]。这提示BNCT对肿瘤的杀伤效果可能受细胞周期影响较小。目前BNCT引起的DNA损伤和修复、BNCT杀伤肿瘤细胞具体机制相关研究较少;但整体来看,BNCT对肿瘤细胞的抑制作用显著且存在多种杀伤机制。同时,BNCT对肿瘤细胞的影响可能与常规放疗不同,未来需更多深入探究。
三、BNCT比常规放疗所具有的潜在优势目前常规放疗的物理放射源包括X射线、电子束射、质子重离子等,常用的放疗方式有三维适形放疗、调强放疗、图像引导放射治疗等。BNCT相较于常规放疗,具有以下理论优势:①肿瘤细胞的精准杀伤:通过研发更加理想的含硼药物,使其选择性的聚集于肿瘤细胞,从而使治疗更加精准,能够克服呼吸运动、摆位误差带来的弊端。②正常细胞的精准防护:BNCT核裂变的损伤直径约为一个细胞直径,理论上可达到单个细胞级别的保护效果。③同等能量下,中子穿透力比质子等粒子更强[33],利于深部肿瘤治疗。
恶性肿瘤常有浸润生长、脏器内或局部淋巴结转移、全身多处转移、难以发现的微小转移灶等特点,常规放疗对于这些特点在治疗上具有劣势。由上述BNCT的理论优势结合恶性肿瘤特点,BNCT具有潜在临床治疗上的优势:①针对向周围浸润的肿瘤病灶,BNCT可借助含硼药物区分肿瘤和正常组织,精准杀伤肿瘤细胞而保护正常细胞。②针对脏器内转移、局部淋巴结转移和全身多发转移,只要有理想的含硼药物,BNCT可扩大照射范围甚至照射整个脏器或多个转移的区域,同时能充分保护各照射区域内的正常组织。③针对难以发现的微小转移灶,只要含硼药物能够在肿瘤细胞有效聚集,BNCT就能够将其精准杀灭。另外,常规放疗对于细胞周期具有依赖性;而BNCT理论上对细胞周期的依赖性较小。BNCT的独特优势依赖于可靠的中子源和高效理想的含硼药物,随着中子设备和含硼药物研发的深入,BNCT优势有望实现。
四、BNCT的临床应用目前BNCT临床研究处于初期阶段,但尚缺乏临床试验对常规放疗和BNCT的疗效、安全性进行比对[8]。BNCT目前的适应证较为局限,主要包括恶性脑瘤、头颈部肿瘤、恶性黑色素瘤等。随着BNCT技术不断进步和各临床试验结果的逐步呈现,其适应证也会进一步扩大。
1. 恶性脑肿瘤:常见的恶性脑瘤包括恶性胶质瘤、恶性脑膜瘤等,手术为主的综合治疗是目前推荐的治疗模式。日本关于恶性胶质瘤的BNCT临床研究报道,经BNCT治疗后,恶性脑瘤患者中位生存期为10.8~27.1个月,与常规放疗的数据相近[34-42]。一项针对167例复发性或新诊断的恶性脑瘤患者的临床研究发现,经BNCT治疗后,复发性肿瘤患者中位生存期为10.8个月,新诊断的肿瘤患者中位生存期为15.6个月[9]。Kawabata等[43]报道,复发性高级别恶性脑膜瘤患者经BNCT治疗后,中位生存时间为14.1个月。一项关于31例复发性高级别脑膜瘤患者的回顾性研究显示,BNCT治疗后,患者PET扫描证实脑膜瘤病灶中含硼药物聚集浓度为正常脑组织的3.8倍,所有病灶BNCT后均体积减小,患者中位生存期为24.6个月[44]。但BNCT在治疗过程中也表现出了一定的不良反应,包括脑组织水肿等。以上表明,BNCT对恶性脑瘤是一种有效的治疗手段,但其疗效、不良反应等相关临床数据仍需进一步积累。
2. 头颈部肿瘤:头颈部肿瘤(head and neckcancer,HNC)是一类发病率高、死亡率高的恶性肿瘤[45],其中90%为鳞状细胞癌(head and neck squamous cell carcinomas,HNSCC)[8]。复发性HNSCC对于BNCT具有良好的反应[46]。Fuwa等[47]报道,26例复发性HNC患者接受BNCT治疗后,平均生存为33.6个月,缓解率达85%。另有研究报道,12例复发性HNC患者接受BNCT后,4例完全缓解(complete response,CR),3例部分缓解(partial response,PR),2例疾病稳定(stable disease,SD)[48]。一项针对21例复发性或局部进展的HNC的Ⅱ期临床试验发现,BNCT之后鳞癌患者缓解率(objective response rate,ORR)为75%,疾病控制率(disease control rate,DCR)达88%,2年总生存(overall survival,OS)比例为58%;而非鳞癌患者ORR为69%,DCR为100%,2年OS比例为100%[49]。同时该研究还发现,肿瘤患者正常组织的RBE显著小于肿瘤组织的RBE,患者中最常见的不良反应是脱发(95%),血液淀粉酶升高(86%)和恶心(81%),表明BNCT安全性良好[49]。Kimura等[50]针对1例唇乳头状囊腺癌患者进行BNCT治疗,5个月后肿瘤缩小86%。上述结果均表明,BNCT对头颈部癌具有良好的疗效,且安全可耐受。另外,一项BNCT序贯图像引导的调强放疗(image-guided intensity-modulated radiotherapy,IG-IMRT)治疗局部复发头颈癌的临床试验显示,尽管患者缓解率可达64%,但照射野内及边缘失败发生率较高。这提示BNCT联合治疗的模式及疗效仍需进一步探索[51]。
3. 恶性黑色素瘤:恶性黑色素瘤是一种常见的皮肤恶性肿瘤,手术治疗是其主要治疗手段[8]。一些临床研究对BNCT治疗恶性黑色素瘤进行了初步探讨。Hiratsuka等[52]报道,对于8例恶性黑色素瘤患者进行BNCT治疗,1年以内所有病灶均减小,CR和PR分别为75%和25%,而且未出现明显并发症。还有一项临床研究针对7例黑色素瘤多发皮下转移且治疗后进展的患者进行BNCT治疗,结果发现在所有可评估病灶结节中,ORR为69.3%,SD为30.7%,疾病进展率为0%;3级不良反应发生率40%,且BNCT治疗后6个月,不良反应均逐步消退,无4级和5级不良反应出现[53]。这些数据均提示BNCT不同于常规放疗,恶性黑色素瘤对BNCT显示出良好反应,BNCT可用于恶性黑色素瘤治疗。
4. 其他肿瘤:对于乳腺外佩吉特病(extramammary Paget′s disease),BNCT亦显示出良好疗效。Makino等[54]最先报道2例应用BNCT进行外生殖器佩吉特病治疗的病例,结果显示患者均达CR,且无复发和转移迹象。另外一项关于外阴恶性肿瘤的研究显示,4例患者均达CR,且不良反应安全可耐受[55]。对于不可切除的肺癌和恶性胸膜间皮瘤,BNCT也有一定效果[56-57]。Suzuki等[58]首先报道了BNCT用于治疗多发肝细胞癌的案例,该患者同时使用BPA和BSH,BNCT治疗1个月,肿瘤病灶显示稳定,3.5个月后出现疾病进展。BNCT用于治疗颞下颌关节骨肉瘤也是有效的,且患者在治疗后2年内无复发迹象[59]。Futamura等[60]报道,1例复发性枕骨骨肉瘤患者用BPA进行BNCT治疗3周后恢复行走能力,且患者仅出现了脱发的不良反应,提示BNCT对于骨肉瘤安全有效。关于BNCT治疗乳腺癌亦有部分报道,表明BNCT可能是乳腺癌的一项潜在有效疗法[61]。另外,一项使用大鼠进行BNCT的实验观察到,BNCT可在结肠癌细胞荷瘤大鼠中诱发远隔效应,提示BNCT对于肿瘤免疫有一定影响[62]。
五、结语BNCT凭借其特有的放射线产生原理而成为肿瘤新疗法研究领域的热点。目前初步的临床数据也表明,BNCT对部分恶性肿瘤的效果是较为显著的。尽管如此,BNCT的研发和应用仍有一些问题亟待解决:首先,更加高效、靶向性更强的含硼药物有待研发,比如对现有的含硼药物进行改造或研制新的载硼化合物,从而为充分发挥BNCT的优势提供基础;其次,BNCT物理生物学效应以及相关细胞生物学、分子生物学机制研究非常缺乏,亟待加强,以进一步阐明BNCT对于肿瘤细胞的作用机制;最后,更加合理、优化的Ⅱ期和Ⅲ期临床试验有待加强,以便更加全面地评估BNCT疗效和安全性。尽管目前面临一些挑战,BNCT依然以其独特性吸引着肿瘤学研究者和临床工作者的关注。随着技术的进步和研究的深入,BNCT将具有更广阔的应用空间。
利益冲突 无
作者贡献声明 陈鹏翔负责撰写论文;宋庆旭指导论文修改;程博、刘昱辰、刘天宇协助论文修改;程玉峰指导论文撰写
[1] |
Malouff TD, Seneviratne DS, Ebner DK, et al. Boron neutron capture therapy: A review of clinical applications[J]. Front Oncol, 2021, 11: 601820. DOI:10.3389/fonc.2021.601820 |
[2] |
徐笛, 张玉财, 周琪怡, 等. 肿瘤硼中子俘获治疗的理论基础与近期研究进展[J]. 中华放射医学与防护杂志, 2021, 41(1): 74-77. Xu D, Zhang YC, Zhou QY, et al. Boron neutron capture therapy of cancers: principles and recent research progress[J]. Chin J Radiol Med Prot, 2021, 41(1): 74-77. DOI:10.3760/cma.j.issn.0254-5098.2021.01.015 |
[3] |
贺慧芳, 杨雨岩, 孔蕾, 等. 一种特殊的放射治疗技术——硼中子俘获治疗的研究[J]. 中国医学装备, 2022, 19(6): 164-168. He HF, Yang YY, Kong L, et al. Study on BNCT: one kind of special radiation therapy[J]. China Med Equip, 2022, 19(6): 164-168. DOI:10.3969/j.issn.1672-8270.2022.06.036 |
[4] |
高军, 朱雅迪, 王永峰, 等. 硼中子俘获治疗剂量验证方法进展[J]. 中华放射医学与防护杂志, 2023, 43(3): 228-233. Gao J, Zhu YD, Wang YF, et al. Development of dose verification methods for boron neutron capture therapy[J]. Chin J Radiol Med Prot, 2023, 43(3): 228-233. DOI:10.3760/cma.j.cn112271-20221115-00448 |
[5] |
苏玮, 雷惠雯, 窦志慧, 等. 硼中子俘获治疗中硼携带剂的研究进展及临床应用[J]. 现代肿瘤医学, 2023, 31(9): 1744-1751. Su W, Lei HW, Dou ZH, et al. Research progress and clinical application of boron carrier in BNCT therapy[J]. J Mod Oncol, 2023, 31(9): 1744-1751. DOI:10.3969/j.issn.1672-4992.2023.09.031 |
[6] |
Matsumoto Y, Fukumitsu N, Ishikawa H, et al. A critical review of radiation therapy: From particle beam therapy (proton, carbon, and BNCT) to beyond[J]. J Pers Med, 2021, 11(8). DOI:10.3390/jpm11080825 |
[7] |
Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer[J]. Cancer Commun (Lond), 2018, 38(1): 35. DOI:10.1186/s40880-018-0299-7 |
[8] |
He H, Li J, Jiang P, et al. The basis and advances in clinical application of boron neutron capture therapy[J]. Radiat Oncol, 2021, 16(1): 216. DOI:10.1186/s13014-021-01939-7 |
[9] |
Suzuki M. Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era[J]. Int J Clin Oncol, 2020, 25(1): 43-50. DOI:10.1007/s10147-019-01480-4 |
[10] |
Nedunchezhian K, Aswath N, Thiruppathy M, et al. Boron neutron capture therapy - A literature review[J]. J Clin Diagn Res, 2016, 10(12): ZE01-ZE04. DOI:10.7860/JCDR/2016/19890.9024 |
[11] |
Yang W, Wu G, Barth RF, et al. Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies[J]. Clin Cancer Res, 2008, 14(3): 883-891. DOI:10.1158/1078-0432.CCR-07-1968 |
[12] |
Yang W, Barth RF, Wu G, et al. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors[J]. J Neurooncol, 2009, 95(3): 355-365. DOI:10.1007/s11060-009-9945-x |
[13] |
Maeda H. The 35th anniversary of the discovery of EPR effect: A new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects[J]. J Pers Med, 2021, 11(3). DOI:10.3390/jpm11030229 |
[14] |
Tachikawa S, Miyoshi T, Koganei H, et al. Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy[J]. Chem Commun (Camb), 2014, 50(82): 12325-12328. DOI:10.1039/c4cc04344h |
[15] |
Koganei H, Ueno M, Tachikawa S, et al. Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers[J]. Bioconjug Chem, 2013, 24(1): 124-132. DOI:10.1021/bc300527n |
[16] |
Gadan MA, González SJ, Batalla M, et al. Reprint of application of BNCT to the treatment of HER2+ breast cancer recurrences: Research and developments in Argentina[J]. Appl Radiat Isot, 2015, 106: 260-264. DOI:10.1016/j.apradiso.2015.10.009 |
[17] |
Olusanya T, Calabrese G, Fatouros DG, et al. Liposome formulations of o-carborane for the boron neutron capture therapy of cancer[J]. Biophys Chem, 2019, 247: 25-33. DOI:10.1016/j.bpc.2019.01.003 |
[18] |
Luderer MJ, Muz B, Alhallak K, et al. Thermal sensitive liposomes improve delivery of boronated agents for boron neutron capture therapy[J]. Pharm Res, 2019, 36(10): 144. DOI:10.1007/s11095-019-2670-z |
[19] |
Liu J, Ai X, Zhang H, et al. Polymeric micelles with endosome escape and redox-responsive functions for enhanced intracellular drug delivery[J]. J Biomed Nanotechnol, 2019, 15(2): 373-381. DOI:10.1166/jbn.2019.2693 |
[20] |
Isono A, Tsuji M, Sanada Y, et al. Design, synthesis, and evaluation of lipopeptide conjugates of mercaptoundecahydrododecaborate for boron neutron capture therapy[J]. Chem Med Chem, 2019, 14(8): 823-832. DOI:10.1002/cmdc.201800793 |
[21] |
Luderer MJ, de la Puente P, Azab AK. Advancements in tumor targeting strategies for boron neutron capture therapy[J]. Pharm Res, 2015, 32(9): 2824-2836. DOI:10.1007/s11095-015-1718-y |
[22] |
Nakase I, Katayama M, Hattori Y, et al. Intracellular target delivery of cell-penetrating peptide-conjugated dodecaborate for boron neutron capture therapy (BNCT)[J]. Chem Commun (Camb), 2019, 55(93): 13955-13958. DOI:10.1039/c9cc03924d |
[23] |
Ferreira TH, Miranda MC, Rocha Z, et al. An assessment of the potential use of BNNTs for boron neutron capture therapy[J]. Nanomaterials (Basel), 2017, 7(4). DOI:10.3390/nano7040082 |
[24] |
Mechetin GV, Zharkov DO. DNA damage response and repair in boron neutron capture therapy[J]. Genes (Basel), 2023, 14(1): 127. DOI:10.3390/genes14010127 |
[25] |
Kondo N. DNA damage and biological responses induced by boron neutron capture therapy (BNCT)[J]. Enzymes, 2022, 51: 65-78. DOI:10.1016/bs.enz.2022.08.005 |
[26] |
Kondo N, Michiue H, Sakurai Y, et al. Detection of γH2AX foci in mouse normal brain and brain tumor after boron neutron capture therapy[J]. Rep Pract Oncol Radiother, 2016, 21(2): 108-112. DOI:10.1016/j.rpor.2014.10.005 |
[27] |
Kinashi Y, Takahashi S, Kashino G, et al. DNA double-strand break induction in Ku80-deficient CHO cells following boron neutron capture reaction[J]. Radiat Oncol, 2011, 6: 106. DOI:10.1186/1748-717X-6-106 |
[28] |
Chen KH, Lai ZY, Li DY, et al. Analysis of DNA damage responses after boric acid-mediated boron neutron capture therapy in hepatocellular carcinoma[J]. Anticancer Res, 2019, 39(12): 6661-6671. DOI:10.21873/anticanres.13881 |
[29] |
Sun T, Zhang Z, Li B, et al. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro[J]. Radiat Oncol, 2013, 8(1): 195. DOI:10.1186/1748-717X-8-195 |
[30] |
Fujita Y, Kato I, Iwai S, et al. Role of p53 mutation in the effect of boron neutron capture therapy on oral squamous cell carcinoma[J]. Radiat Oncol, 2009, 4: 63. DOI:10.1186/1748-717X-4-63 |
[31] |
Masunaga SI, Sanada Y, Tano K, et al. An attempt to improve the therapeutic effect of boron neutron capture therapy using commonly employed 10B-carriers based on analytical studies on the correlation among quiescent tumor cell characteristics, tumor heterogeneity and cancer stemness[J]. J Radiat Res, 2020, 61(6): 876-885. DOI:10.1093/jrr/rraa048 |
[32] |
Kondo N, Hikida M, Nakada M, et al. Glioma stem-like cells can be targeted in boron neutron capture therapy with boronophenylalanine[J]. Cancers (Basel), 2020, 12(10). DOI:10.3390/cancers12103040 |
[33] |
罗军益, 何佳恒. 硼中子俘获治疗治疗肿瘤及相关技术研究进展[J]. 辐射防护通讯, 2010, 30(2): 26-29. Luo JY, He JH. Application of BNCT to tumor therapy[J]. Radiat Prot Bull, 2010, 30(2): 26-29. DOI:10.3969/j.issn.1004-6356.2010.02.005 |
[34] |
Miyatake S, Kawabata S, Kajimoto Y, et al. Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings on neuroimages[J]. J Neurosurg, 2005, 103(6): 1000-1009. DOI:10.3171/jns.2005.103.6.1000 |
[35] |
Miyatake SI, Kawabata S, Hiramatsu R, et al. Boron neutron capture therapy of malignant gliomas[J]. Prog Neurol Surg, 2018, 32: 48-56. DOI:10.1159/000469679 |
[36] |
Yamamoto T, Matsumura A, Nakai K, et al. Current clinical results of the Tsukuba BNCT trial[J]. Appl Radiat Isot, 2004, 61(5): 1089-1093. DOI:10.1016/j.apradiso.2004.05.010 |
[37] |
Yamamoto T, Nakai K, Kageji T, et al. Boron neutron capture therapy for newly diagnosed glioblastoma[J]. Radiother Oncol, 2009, 91(1): 80-84. DOI:10.1016/j.radonc.2009.02.009 |
[38] |
Kageji T, Nagahiro S, Matsuzaki K, et al. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome[J]. Int J Radiat Oncol Biol Phys, 2006, 65(5): 1446-1455. DOI:10.1016/j.ijrobp.2006.03.016 |
[39] |
Kageji T, Nagahiro S, Mizobuchi Y, et al. Boron neutron capture therapy (BNCT) for newly-diagnosed glioblastoma: comparison of clinical results obtained with BNCT and conventional treatment[J]. J Med Invest, 2014, 61(3-4): 254-263. DOI:10.2152/jmi.61.254 |
[40] |
Kageji T, Mizobuchi Y, Nagahiro S, et al. Long-survivors of glioblatoma treated with boron neutron capture therapy (BNCT)[J]. Appl Radiat Isot, 2011, 69(12): 1800-1802. DOI:10.1016/j.apradiso.2011.03.021 |
[41] |
Kawabata S, Miyatake S, Kuroiwa T, et al. Boron neutron capture therapy for newly diagnosed glioblastoma[J]. J Radiat Res, 2009, 50(1): 51-60. DOI:10.1269/jrr.08043 |
[42] |
Miyatake S, Kawabata S, Yokoyama K, et al. Survival benefit of boron neutron capture therapy for recurrent malignant gliomas[J]. J Neurooncol, 2009, 91(2): 199-206. DOI:10.1007/s11060-008-9699-x |
[43] |
Kawabata S, Hiramatsu R, Kuroiwa T, et al. Boron neutron capture therapy for recurrent high-grade meningiomas[J]. J Neurosurg, 2013, 119(4): 837-844. DOI:10.3171/2013.5.JNS122204 |
[44] |
Takeuchi K, Kawabata S, Hiramatsu R, et al. Boron neutron capture therapy for high-grade skull-base meningioma[J]. J Neurol Surg B Skull Base, 2018, 79(Suppl 4): S322-S327. DOI:10.1055/s-0038-1666837 |
[45] |
Jou A, Hess J. Epidemiology and molecular biology of head and neck cancer[J]. Oncol Res Treat, 2017, 40(6): 328-332. DOI:10.1159/000477127 |
[46] |
Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality[J]. Cancer Commun (Lond), 2018, 38(1): 36. DOI:10.1186/s40880-018-0280-5 |
[47] |
Fuwa N, Suzuki M, Sakurai Y, et al. Treatment results of boron neutron capture therapy using intra-arterial administration of boron compounds for recurrent head and neck cancer[J]. Br J Radiol, 2008, 81(969): 749-752. DOI:10.1259/bjr/65306248 |
[48] |
Wang LW, Chen YW, Ho CY, et al. Fractionated BNCT for locally recurrent head and neck cancer: experience from a phase Ⅰ/Ⅱ clinical trial at Tsing Hua Open-Pool Reactor[J]. Appl Radiat Isot, 2014, 88: 23-27. DOI:10.1016/j.apradiso.2013.11.134 |
[49] |
Hirose K, Konno A, Hiratsuka J, et al. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan ((10)B) for recurrent or locally advanced head and neck cancer (JHN002): An open-label phase Ⅱ trial[J]. Radiother Oncol, 2021, 155: 182-187. DOI:10.1016/j.radonc.2020.11.001 |
[50] |
Kimura Y, Ariyoshi Y, Miyatake S, et al. Boron neutron capture therapy for papillary cystadenocarcinoma in the upper lip: a case report[J]. Int J Oral Maxillofac Surg, 2009, 38(3): 293-295. DOI:10.1016/j.ijom.2008.12.010 |
[51] |
Wang LW, Liu YH, Chu PY, et al. Boron neutron capture therapy followed by image-guided intensity-modulated radiotherapy for locally recurrent head and neck cancer: A prospective phase Ⅰ/Ⅱ trial[J]. Cancers (Basel), 2023, 15(10): 2762. DOI:10.3390/cancers15102762 |
[52] |
Hiratsuka J, Kamitani N, Tanaka R, et al. Long-term outcome of cutaneous melanoma patients treated with boron neutron capture therapy (BNCT)[J]. J Radiat Res, 2020, 61(6): 945-951. DOI:10.1093/jrr/rraa068 |
[53] |
Menéndez PR, Roth BM, Pereira MD, et al. BNCT for skin melanoma in extremities: updated Argentine clinical results[J]. Appl Radiat Isot, 2009, 67(7-8 Suppl): S50-53. DOI:10.1016/j.apradiso.2009.03.020 |
[54] |
Makino E, Sasaoka S, Aihara T, et al. The First clinical trial of boron neutron capture therapy using 10B-para-boronophenylalanine for treating extramammary paget's disease[J]. Eur J Cancer, 2012, 48: S244-245. DOI:10.1016/S0959-8049(12)71630-1 |
[55] |
Hiratsuka J, Kamitani N, Tanaka R, et al. Boron neutron capture therapy for vulvar melanoma and genital extramammary Paget's disease with curative responses[J]. Cancer Commun (Lond), 2018, 38(1): 38. DOI:10.1186/s40880-018-0297-9 |
[56] |
Suzuki M, Endo K, Satoh H, et al. A novel concept of treatment of diffuse or multiple pleural tumors by boron neutron capture therapy (BNCT)[J]. Radiother Oncol, 2008, 88(2): 192-195. DOI:10.1016/j.radonc.2008.06.009 |
[57] |
Farías RO, Bortolussi S, Menéndez PR, et al. Exploring boron neutron capture therapy for non-small cell lung cancer[J]. Phys Med, 2014, 30(8): 888-897. DOI:10.1016/j.ejmp.2014.07.342 |
[58] |
Suzuki M, Sakurai Y, Hagiwara S, et al. First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma[J]. Jpn J Clin Oncol, 2007, 37(5): 376-381. DOI:10.1093/jjco/hym039 |
[59] |
Uchiyama Y, Matsumoto K, Murakami S, et al. MRI in a case of osteosarcoma in the temporomandibular joint[J]. Dentomaxillofac Radiol, 2014, 43(2): 20130280. DOI:10.1259/dmfr.20130280 |
[60] |
Futamura G, Kawabata S, Siba H, et al. A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy[J]. Radiat Oncol, 2014, 9: 237. DOI:10.1186/s13014-014-0237-z |
[61] |
何晓梁, 瞿凡, 赖芋州, 等. 硼中子俘获治疗的理论基础及其在乳腺癌中的相关研究[J]. 肿瘤预防与治疗, 2022, 35(10): 957-962. He XL, Qu F, Lai YZ, et al. Theoretical basis of boron neutron capture therapy and its research relevant to breast cancer[J]. J Cancer Control Treat, 2022, 35(10): 957-962. DOI:10.3969/j.issn.1674-0904.2022.10.012 |
[62] |
Trivillin VA, Pozzi E, Colombo LL, et al. Abscopal effect of boron neutron capture therapy (BNCT): proof of principle in an experimental model of colon cancer[J]. Radiat Environ Biophys, 2017, 56(4): 365-375. DOI:10.1007/s00411-017-0704-7 |