CT具有成像速度快、空间分辨率高的特点。近年来,随着CT软硬件技术的提升,成像速度愈快,图像分辨率愈高,其在临床各种疾病的应用愈加广泛。但伴随的一系列辐射危害亦不容忽视,尤其对未成年群体[1]。未成年人组织与器官的细胞处于生长分裂期,辐射对其的危害程度是成人的2~3倍[2],儿童时期接触CT辐射与晚年白血病和脑肿瘤的发病率高度相关,把控优化减少儿童患者的辐射剂量至关重要[3]。为此,国际放射防护委员(ICRP)提出了辐射防护原则,为了优化CT检查的辐射剂量,应当选择符合检查区域和患者年龄或体型大小的扫描方案,以确保对每个患者的辐射剂量最小,并同时提出了诊断参考水平(DRL) 的概念[4]。我国亦有专家学者发布了适用于成年人常见CT检查项目的DRLs,为中等体型成年患者群体提供了一种合理的辐射指征[5],但并没有特别针对儿童群体。由于儿童身体体型差异范围广泛,ICRP 135号报告[4]及《欧洲儿童成像DRL指南》[6]推荐建立基于年龄和体型特征的DRLs。本研究针对儿童头颅、胸部、腹盆部CT检查,探讨建立容积CT剂量指数(CTDIvol)和基于水当量直径(WD)的体型特异性剂量估算值(SSDEWD)的本医疗机构DRL(LDRLs)典型值,分析二者差异并评价本医疗机构CT检查辐射水平。
资料与方法1. 临床资料:回顾性收集2021年1月至2021年12月间南京医科大学附属儿童医院收治的儿童患者CT影像学资料,年龄1个月~15岁,其中头颅检查患儿1 391例,年龄(6.26±4.77)岁;胸部检查1 386例,年龄(6.94±4.92)岁;腹盆部检查1 035例,年龄(6.82±4.66)岁。本研究所有检查均为扫描体位标准,扫描范围内外无金属异物、对比剂及植入物,扫描部位无巨大占位或缺损,所有患儿图像均能满足影像诊断要求,排除特殊检查目的外均纳入研究范围。所有数据均来自南京医科大学附属儿童医院,检查使用荷兰飞利浦系列CT设备,通过南京市疾病预防控制中心状态验收,符合GB 17589-2011[7]安全使用条件。
2. 数据收集:记录每一个纳入研究患儿的年龄、CTDIvol及剂量长度乘积(DLP),并基于最中间图像计算有效直径(d)、WD、转换因子f16/32X SIZE及SSDEWD。计算方法为:选取扫描部位图像最中间层面手动划一包含所有解剖结构的最小矩形感兴趣区,测量其前后径(AP)及左右径(LAT),计算d;在相同层面手动勾画一包含所有解剖结构的最小椭圆形感兴趣区,记录其面积(AROI)及平均CT值(CTROI),计算WD及f16/32X SIZE,依据上述数据计算SSDEWD。参考AAPM 204、220及293号报告其公式为(1)~(4)[8-10]:
$ d = \sqrt {AP \times LAT} $ | (1) |
$ WD = 2\sqrt {\frac{{{A_{{\rm{ROI}}}}}}{\pi }\left( {\frac{{C{T_{{\rm{ROI}}}}}}{{1000}} + 1} \right)} $ | (2) |
$ f_{{\rm{SIZE}}}^{16/32X} = {\rm{a}} \times \exp ( - {\rm{b}} \times WD) $ | (3) |
$ SSD{E_{{\rm{WD}}}} = f_{{\rm{SIZE}}}^{16/32X} \times {\rm{CTD}}{{\rm{I}}_{{\rm{vol}}}} $ | (4) |
头颅CTDIvol基于16 cm标准体模,常数a、b取值为1.985、0.049;胸、腹盆部CTDIvol基于32 cm标准体模,常数a、b取值为3.704、0.037。
3. DRL分组方法:结合参考文献对儿童患者进行分组[6],对头颅、胸部、腹盆部按年龄分组标准为 < 1、1~、5 ~、10~、15~岁;对胸部、腹盆部按体型使用d分组标准为:< 15、15~、20~、25~、30~cm;头颅体型使用LAT分组[11],分组标准为:< 12.5、12.5~、14~、15~、16~cm。
4. 统计学处理:使用SPSS 25.0软件进行分析。根据年龄和体型对每个辐射剂量指标进行描述性统计分析,将各分组内辐射剂量指标的第75百分位数(Q3)作为LDRLs典型值。正态分布数据采用x±s表示。正态分布且方差齐性数据采用配对t检验进行差异比较。P < 0.05为差异有统计学意义。
结果1. 头颅、胸部、腹盆部CTDIvol与SSDEWD的差异:头颅LAT < 12.5 cm、年龄 < 1岁分组CTDIvol小于SSDEWD,其余分组CTDIvol均大于SSDEWD;头颅CTDIvol为(18.63±3.24)mGy,SSDEWD为(16.38±1.81)mGy,其差异有统计学意义(t = 48.78,P < 0.001)。胸部、腹盆部各分组CTDIvol均小于SSDEWD;胸部CTDIvol为(2.77±1.02)mGy,SSDEWD为(5.22±1.26)mGy,其差异有统计学意义(t=-210.89,P < 0.001);腹盆部CTDIvol为(3.36±1.82)mGy,SSDEWD为(6.27±2.44)mGy,其差异亦有统计学意义(t=-115.16,P < 0.001)。各分组具体统计学结果见表 1。
![]() |
表 1 不同部位按年龄分组CTDIvol、SSDEWD间的差异(mGy,x±s) Table 1 The differences between CTDIvol and SSDEWD within groups(mGy, x±s) |
2. 头颅、胸部、腹盆部LDRLs典型值统计结果:根据国际惯例及结合儿童辐射剂量指标较成人小,见表 2。
![]() |
表 2 头颅、胸部、腹盆部按年龄分组LDRLs典型值(mGy,Q3) Table 2 Typical values of DRLs for head, chest and abdomen-pelvis(mGy, Q3) |
3. LDRLs与其他国家比较:结果列于表 3。由表 3可知,头颅LDRLs远低于美国、日本、德国、埃及,与伊朗相当处于最低水平;胸部LDRLs的控制优于伊朗、日本、德国、埃及,稍差于美国;腹盆部LDRLs控制稍高于伊朗,远低于日本,处于中等水平[12-16]。综合来看,LDRLs与其他国家相比处于合理且较低的水平,说明本医疗机构对于辐射剂量的管控较好。
![]() |
表 3 LDRLs典型值与其他国家的比较(mGy) Table 3 Comparison of LDRLs typical values with other countries (mGy) |
讨论
DRLs是ICRP提出的用于患者放射防护最优化的一个调查水平指标,用来检验常规CT检查中体型中等受检者辐射剂量的高低,通常是指一个国家或地区患者辐射剂量分布的某一百分位数,可作为非正常高辐射剂量水平(常用第75百分位数)的一个警示,亦可作为非正常低辐射剂量水平(常用25%位数)的一个提示[17]。牛延涛等[5]建立了我国成人辐射剂量(25%位数和50%位数)和诊断参考水平(75%位数),但对于未成年人的DRLs鲜见文献报道。DRLs衡量指标常用CTDIvol及DLP, 有学者研究CTDIvol对体型较小的幼儿及儿童的辐射剂量衡量并不准确[18]。CTDIvol会高估幼儿头颅的辐射剂量[19], 低估胸部及腹盆部辐射剂量[20-21]。为准确衡量辐射剂量,AAPM提出了基于d和WD的体型特异性剂量估算值,ED仅仅考虑体型因素对辐射剂量的影响[8],而WD还使用了CTROI定义组织器官对X射线的衰减状况[9],因而二者在衡量辐射剂量方面仍有差异。研究表明,两种评价方式在腹盆部的差异 < 5%,使用二者皆可[22];胸部由于富含气体,二者间的差距可高达12%[23];而在头颅方面,二者间差距为5.7%~10.84%[24],因而使用SSDEWD对辐射剂量衡量更为准确。本研究通过对头颅、胸部、腹盆部CT检查资料的统计建立基于CTDIvol、SSDEWD及DLP的本医疗机构DRL典型值,与其他国家DRLs相比较以评估本医疗机构辐射水平。
辐射剂量受到CT设备及检查参数的多重影响,本研究数据来自3部飞利浦系列CT,其型号分别为Brilliance 128、64及16。SSDEWD是CTDIvol与f16/32XSIZE的乘积,检查参数将直接影响SSDEWD的大小。低管电压将增大组织CT值,而高管电压将减小其CT值[25],对于管电压的使用,本研究采用年龄分组的原则:< 3岁儿童使用80 kVp管电压,3~12岁使用100 kVp,12岁以上则为120 kVp。管电流则采用自动曝光控制技术。相同检查参数下,重建算法对图像质量影响很大,因而亦影响辐射剂量。本研究采用的iDose4迭代重建算法,可以有效弥补检查参数降低对图像噪声增加的不利影响,尽可能降低辐射剂量[26]。儿童体型与年龄密切相关,不能使用与成人类似的统一的DRLs评价方式。儿童DRLs的分组方式多样,且分组范围标准不一,本研究资料缺少患儿体重信息,故采用了最常见的年龄及有效直径分组。有研究表明,在确定CT设备辐射剂量指标时,体重不如年龄[27]。通过建立儿童头颅、胸部、腹盆部LDRLs典型值可以看出,本医疗机构患儿辐射剂量水平与其他国家相比处于一个合理且较低的水平。CTDIvol与SSDEWD比较,胸部、腹盆部分组CTDIvol均小于SSDEWD;而头颅除Age < 1岁、LAT < 12.5 cm分组外,CTDIvol皆大于SSDEWD。年龄越小,胸部、腹盆部CTDIvol与SSDEWD间差异越大;而在头部则年龄越大两者差异越大,这与以往文献研究相符[28-29]。由此可见,使用SSDEWD衡量辐射剂量更为准确,但在以往的DRLs报道中大多使用CTDIvol,亟需建立基于SSDEWD的DRLs。
本研究不足之处:①本研究统计DRL典型值皆基于平扫图像,没有对增强图像进行研究,对比剂对SSDEWD的衡量没有影响,但对比剂的存在可以在保持图像质量不变的前提下降低其辐射剂量[30],今后可进一步建立增强条件下的DRLs。②本研究LDRLs为最新数据统计,其他国家DRLs时效性相对滞后,但囿于信息缺乏,其比较结果相对而言不公平。③与其他国家DRLs比较时采用年龄为分组依据,相同年龄段国人儿童与国外相比其体型可能有差异,其比较结果不够严谨。④仅统计了常见检查部位,今后可涉及更多检查部位以进一步优化辐射。
通过对儿童头颅、胸部、腹盆部CT检查资料的统计,得出了基于年龄和体型的LDRLs典型值,与其他国家相比处于合理且较低的水平。定期统计LDRLs典型值并以此优化检查参数是降低儿童辐射剂量的重要工具。
利益冲突 所有作者无利益冲突,排名无争议,在此对研究的独立性和科学性予以保证
作者贡献声明 张见负责本文模型构建及实验设计、论文撰写;杨凤、王颖参与调查数据的收集、整理及统计学处理;张晓军参与调查方案的研究,负责在论文写作过程中给予指导
[1] |
李润根, 时超刚, 赵静, 等. 欧洲儿童CT成像的诊断参考水平[J]. 中华放射医学与防护杂志, 2020, 40(4): 326-332. Li RG, Shi CG, Zhao J, et al. Diagnostic reference levels of pediatric CT imaging in Europe[J]. Chin J Radiol Med Prot, 2020, 40(4): 326-332. DOI:10.3760/cma.j.issn.0254-5098.2020.04.014 |
[2] |
Priyanka, Kadavigere R, Sukumar S, et al. Diagnostic reference levels for computed tomography examinations in pediatric population - a systematic review[J]. J Can Res Ther, 2021, 17(4): 845-852. DOI:10.4103/jcrt.JCRT_945_20 |
[3] |
Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage of 11 million Australians[J]. BMJ, 2013, 346: f2360. DOI:10.1136/bmj.f2360 |
[4] |
International Commission on Radiological Protection. ICRP Publication 135. Diagnostic reference levels in medical imaging[R]. Ann ICRP, 2017, 46(1): 1-141. DOI: 10.1177/0146645317717209.
|
[5] |
牛延涛, 张永县, 康天良, 等. 成年人CT扫描中辐射剂量和诊断参考水平的探讨[J]. 中华放射医学与防护杂志, 2016, 36(11): 862-867. Niu YT, Zhang YX, Kang TL, et al. Investigation of radiation dose and diagnostic reference levers in CT scanning for adult patients[J]. Chin J Radiol Med Prot, 2016, 36(11): 862-867. DOI:10.3760/cma.j.issn.0254-5098.2016.11.013 |
[6] |
Claudio G, Erich S, Raija S, et al. European society of pediatric radiology computed tomography and dose task force: European guidelines on diagnostic reference levels for pediatric imaging[J]. Pediatr Radiol, 2019, 49(5): 702-705. DOI:10.1007/s00247-019-04346-z |
[7] |
中华人民共和国卫生部. GB 17589-2011. X射线计算机断层摄影装置质量保证检测规范[S]. 北京: 中国标准出版社, 2012. Ministry of Health of the PRC. GB 17589-2011. Specifications for quality assurance test for computed tomography X-ray scanners[S]. Beijing: Standards Press of China, 2012. |
[8] |
American Association of Physicists in Medicine. Report of AAPM TG 204. Size-specific dose estimates (SSDE)in pediatric and adult body CT examinations[R]. Alexandria: AAPM, 2011: 1-22.
|
[9] |
American Association of Physicists in Medicine. Report of AAPM TG 220. Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT[R]. Alexandria: AAPM, 2014: 1-23.
|
[10] |
American Association of Physicists in Medicine. Report of AAPM TG 293. Size-specific dose estimate (SSDE) for head CT[R]. Alexandria: AAPM, 2019: 1-24.
|
[11] |
Sapignoli S, Roggio A, Boschini A, et al. Size-specific dose estimates for pediatric head CT protocols based on the AAPM report TG-293[J]. Phys Med, 2022, 100(8): 26-30. DOI:10.1016/j.ejmp.2022.06.004 |
[12] |
Kanal KM, Butler PF, Chatfield MB, et al. U.S. diagnostic reference levels and achievable doses for 10 pediatric CT examinations[J]. Radiology, 2022, 302(1): 164-174. DOI:10.1148/radiol.2021211241 |
[13] |
Ahmad M, Karim K, Abbas H, et al. Local DRLs for pediatric CT examinations based on size-specific dose estimates in Kermanshah, Iran[J]. Radiat Prot Dosim, 2019, 186(4): 496-506. DOI:10.1093/rpd/ncz056 |
[14] |
Imai R, Miyazaki O, Horiuchi T, et al. Local diagnostic reference level based on size-specific dose estimates: assessment of pediatric abdominal/pelvic computed tomography at a Japanese National Children's Hospital[J]. Pediatr Radiol, 2015, 45(3): 345-353. DOI:10.1007/s00247-014-3189-4 |
[15] |
Schegerer A, Loose R, Heuser LJ, et al. Diagnostic reference levels for diagnostic and interventional X-ray procedures in Germany: update and handling[J]. Rofo, 2019, 191(8): 739-751. DOI:10.1055/a-0824-7603 |
[16] |
Abdou SE, Salama DH, Ahmad KA, et al. 2021 National diagnostic reference levels for pediatric computed tomography in Egypt[J]. Radiat Prot Dosim, 2022, 198(7): 423-433. DOI:10.1093/rpd/ncac069 |
[17] |
International Commission on Radiological Protection. ICRP Publication 103. The 2007 recommendations of the International Commission on Radiological Protection[R]. Ann ICRP, 2007, 37(2-4): 1-332.
|
[18] |
Sookpeng S, Martin CJ, López-González MR. Simplified approach to estimation of organ absorbed doses for patients undergoing abdomen and pelvis CT examination[J]. J Radiol Prot, 2021, 41(4): 1288-1303. DOI:10.1088/1361-6498/ac241d |
[19] |
廖甜, 袁子龙, 牛延涛, 等. 儿童头部CT体型特异性辐射剂量评价[J]. 中华放射医学与防护杂志, 2021, 41(7): 524-528. Liao T, Yuan ZL, Niu YT, et al. Size-specific estimations in children's head CT scans[J]. Chin J Radiol Med Prot, 2021, 41(7): 524-528. DOI:10.3760/cma.j.issn.0254-5098.2021.07.009 |
[20] |
余佩琳, 范文亮, 雷子乔, 等. 不同年龄段儿童与成人胸部CT扫描体型特异性剂量估计[J]. 中华放射医学与防护杂志, 2019, 39(1): 26-30. Yu PL, Fan WL, Lei ZQ, et al. Size-specific dose estimation for chest CT examination in pediatric and adult patients[J]. Chin J Radiol Med Prot, 2019, 39(1): 26-30. DOI:10.3760/cma.j.issn.0254-5098.2019.01.006 |
[21] |
袁肖娜, 高知玲, 马文东, 等. 对比分析容积CT剂量指数与体型特异性的剂量评估在估算腹部CT扫描辐射剂量中的差异[J]. 中华放射医学与防护杂志, 2016, 36(1): 74-77. Yuan XN, Gao ZL, Ma WD, et al. Comparison of CTDIvol and SSDE in evaluating the radiation dose of abdominal CT Scan[J]. Chin J Radiol Med Prot, 2016, 36(1): 74-77. DOI:10.3760/cma.j.issn.0254-5098.2016.01.014 |
[22] |
McCollough C, Bakalyar DM, Bostani M, et al. Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220[J]. AAPM Rep, 2014, 2014: 6-23. |
[23] |
Gabusi M, Riccardi L, Aliberti C, et al. Radiation dose in chest CT: assessment of size-specific dose estimates based on water-equivalent correction[J]. Phys Medica, 2016, 32(2): 393-397. DOI:10.1016/j.ejmp.2015.12.008 |
[24] |
徐健, 毛德旺, 徐建国, 等. 基于有效直径和水当量直径计算头部CT扫描体型特异性剂量估算值的对比分析[J]. 中华放射医学与防护杂志, 2018, 38(7): 535-540. Xu J, Mao DW, Xu JG, et al. Comparison of SSDE values based on effective diameter and water equivalent diameter in head CT examination of adult patient[J]. Chin J Radiol Med Prot, 2018, 38(7): 535-540. DOI:10.3760/cma.j.issn.0254-5098.2018.07.010 |
[25] |
吕蓉, 陈晨, 胡维娟, 等. CT值与管电流、管电压的关系以及图像噪声与辐射剂量的相关性研究[J]. 实用放射学杂志, 2020, 3(1): 123-127. Lv R, Chen C, Hu WJ, et al. Study of the correlation between CT attenuation and tube current, tube voltage and the correlation between image noise and radiation dose[J]. J Pract Radiol, 2020, 3(1): 123-127. DOI:10.3969/j.issn.1002-1671.2020.01.031 |
[26] |
边传振, 张见, 王颖, 等. DoseRight技术条件下颈椎前凸体位在学龄前儿童颈部CT检查的应用[J]. 中华放射医学与防护杂志, 2020, 40(3): 241-246. Bian CZ, Zhang J, Wang Y, et al. Application of cervical anterior flexion in CT examination of neck for preschool children with DoseRight technique[J]. Chin J Radiol Med Prot, 2020, 40(3): 241-246. DOI:10.3760/cma.j.issn.0254-5098.2020.03.015 |
[27] |
Inoue Y, Itoh H, Waga A, et al. Radiation dose management in pediatric brain CT according to age and weight as continuous variables[J]. Tomography, 2022, 8(2): 985-998. DOI:10.3390/tomography8020079 |
[28] |
Satharasinghe DM, Jeyasugiththan J, Wanninayake W, et al. Size-specific dose estimates (SSDEs) for computed tomography and influencing factors on it: a systematic review[J]. J Radiol Prot, 2021, 41(4): R108-R124. DOI:10.1088/1361-6498/ac20b0 |
[29] |
Takakiyo T, Hideki O, Shuichi O, et al. Consideration of the usefulness of a size-specific dose estimate in pediatric CT examination[J]. J Radiat Res, 2018, 59(4): 430-435. DOI:10.1093/jrr/rry022 |
[30] |
Viggiano B, Rose S, Szczykutowicz TP. Effect of contrast agent administration on water equivalent diameter in CT[J]. Med Phys, 2021, 48(3): 1117-1124. DOI:10.1002/mp.14721 |