中华放射医学与防护杂志  2020, Vol. 40 Issue (7): 564-569   PDF    
microRNA-胶质细胞调控网络在放射性脑损伤中的研究现状与展望
区铭乾1 , 孙芙蓉1 , 范炜豪1 , 崔理立2 , 李敏华1 , 林玫君1 , 余杨生3 , 梁诗韵4 , 周海红1     
1. 广东医科大学附属医院神经内科, 湛江 524001;
2. 广东医科大学附属医院广东省衰老相关心脑疾病重点实验室, 湛江 524001;
3. 普宁市人民医院神经内科, 揭阳 515300;
4. 广东医科大学附属医院耳鼻咽喉头颈外科, 湛江 524001
[摘要] 放射性脑损伤(radiation-induced brain injury,RBI)是头颈部肿瘤放射治疗后最为严重的并发症,发病机制复杂,临床病程不可逆且缺乏有效的治疗手段。胶质细胞激活是RBI的主要学说之一,靶向胶质细胞防治RBI是当前研究的热点。microRNA(miRNA)作为一种转录后调控因子,已被证实参与调节胶质细胞辐射敏感性,炎症类型转化,自噬,外泌体,长链非编码RNA(long non-coding RNA,lncRNA)、环状RNA(circular RNA,circRNA)等相关通路,从而介导中枢神经系统(central nervous system,CNS)疾病炎症级联损伤及神经功能修复的发生发展。因此,本文以RBI与miRNA-胶质细胞调控网络的联系为基点,概述了当前可用于防治RBI潜在的通路与方法。
[关键词] 放射性脑损伤    microRNA    胶质细胞    调控网络    
The research status and prospects of microRNA-glial regulatory network in radiation-induced brain injury
Ou Mingqian1 , Sun Furong1 , Fan Weihao1 , Cui Lili2 , Li Minhua1 , Lin Meijun1 , Yu Yangsheng3 , Liang Shiyun4 , Zhou Haihong1     
1. Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
2. Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
3. Department of Neurology, Puning People's Hospital, Jieyang 515300, China;
4. Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China Corresponding
[Abstract] Radiation-induced brain injury (RBI) is the most serious complication of head and neck tumor after radiotherapy. The pathogenesis of RBI is complicated, and the clinical course is irreversible, while no effective treatment available. The activation of glial cells is one of the main theories of RBI, and the prevention and treatment of RBI by targeting glial cells is the focus of current research. As a post-transcriptional regulatory factor, microRNA (miRNA) has been confirmed to be involved in regulatingglial cell radiosensitivity, inflammation type transformation, autophagy, exosomatic, long non-coding RNA (lncRNA), circular RNA (circRNA) and other related pathways, thereby mediating the occurrence and development of cascade reaction of inflammatory injury and neurological function repair of central nervous system (CNS) disease. Therefore, the establishment of miRNA-glial regulatory network may provide a new strategy for the prevention and treatment of RBI.
[Key words] Radiation-induced brain injury    microRNA    Glial cell    Regulatory network    

放射治疗(radiotherapy, RT)是头颈部肿瘤如鼻咽癌、脑膜瘤等的主要治疗手段之一,但是RT本身会对中央及边缘脑组织造成辐射损伤,导致放射性脑损伤(radiation-induced brain injury, RBI)的发生。RBI伴随着脑组织缺血坏死、脱髓鞘、神经反射障碍和认知功能障碍等后遗症[1],严重影响患者的学习记忆、执行能力,注意力等,给患者及社会带来沉重负担。现阶段多使用糖皮质激素对RBI进行治疗,但其多发的不良反应使得其临床应用受到限制[2],因此,进一步探索RBI的发病机制、可能的作用靶点以及优化治疗方案,显得尤为重要。近年来胶质细胞激活介导的炎症级联损伤在RBI发生发展中的作用逐步受到重视,但其具体作用及机制不明。在中枢神经系统(central nervous system, CNS)疾病中,miRNA可以调节多种CNS疾病进程;miRNA与胶质细胞亦存在复杂的调控网络,其机制涉及胶质细胞辐射敏感性、炎症转化、自噬、外泌体、长链非编码RNA(long non-coding RNA, lncRNA)以及环状RNA(circular RNA, circRNA)等相关通路。现以RBI与miRNA-胶质细胞调控网络的联系为基点,概述当前可用于防治RBI的潜在通路与方法,以期为靶向miRNA-胶质细胞调控网络防治RBI提供参考。

一、miRNA结构及其功能

miRNA是一类包含19~25个核苷酸的非编码单链RNA,主要通过与靶基因3′UTR结合而调控下游基因的表达。大脑中的miRNA含量高且种类丰富,miRNA可以通过靶向多种转录物,从而调控单个通路中的多种基因或多种交互通路,是CNS生理和病理进程的关键调节剂[3]

二、miRNA-胶质细胞调控网络

1.辐射敏感性调控:RT主要是利用放射线及粒子束对细胞的DNA进行破坏,从而使肿瘤细胞凋亡。在临床工作中,肿瘤细胞的辐射敏感性越高,RT疗效越显著。然而,辐射同时也会刺激脑内正常细胞(如神经细胞、胶质细胞),诱发神经元凋亡、胶质细胞激活、炎症因子分泌,进而引发RBI。因此,在不影响肿瘤(如鼻咽癌、脑膜瘤细胞)辐射敏感性的前提下,降低胶质细胞对辐射的敏感程度,减少胶质细胞过度激活,能够延缓RBI进展。胶质瘤起源于胶质细胞,有研究显示其具有与原代胶质细胞相似的辐射敏感性[4],因此,miRNA对胶质瘤辐射敏感性的调控可以为该理论提供一定的启示。据报道,一项研究以聚氨酯短支聚乙烯亚胺作为治疗载体,介导miR-145靶向基因oct4和sox2可以提高胶质母细胞瘤的辐射敏感性[5]。此外,高表达的miR-203能通过PI3K/AKT和JAK/STAT3途径使胶质瘤的辐射敏感性增强,而miR-301a的下调则靶向基因TCEAL7发挥相似的增敏作用[6-7]。在其他研究中,miR-26a、miR-96、miR-132、miR-181a、miR-183、miR-210、miR-212、miR-488均被报道参与胶质瘤辐射敏感性的调节[8-15]。尽管目前国内外尚无研究报道miRNA在RBI辐射敏感性中的调控作用,但以上研究证实miRNA能调节胶质细胞瘤的辐射敏感性,因此,深入挖掘上述靶点及通路,负向调控增敏的miRNA,从而减轻放疗诱发的胶质细胞激活及炎症损伤,可能是降低RBI危害的探索方向。尽管上述研究提供了辐射敏感性的实验依据,然而胶质瘤与原代胶质细胞存在着不少的生物学距离,该类miRNA的确切辐射敏感性调控作用仍需在更多原代胶质细胞研究中进行验证。

2.调控小胶质细胞的M1-M2极化:小胶质细胞是CNS特有的免疫细胞[16],小胶质细胞可在病理刺激下转变为M1/M2两种不同的极化状态。其中M1型产生促炎细胞因子,具有较强的微生物杀灭特征,但M1样过度活化会通过释放促炎因子及神经毒性介质造成细胞毒性,进而引发神经退变的恶性循环。而M2型可以抑制炎症并参与促进组织修复[17]。辐射会引起CNS中的氧化应激,刺激小胶质细胞过度激活,介导炎症和RBI的发生[18]。有研究提示,miRNA能下调小胶质细胞极化,抑制CNS炎症,加速神经血管网络修复与重塑[19]。据报道,miR-155在多发性硬化(multiple sclerosis, MS)患者和M1型小胶质细胞中显著增加,拮抗miR-155的表达可以抑制M1型极化和促炎因子的产生,此外,上调miR-136-5p以及下调miR-210均能减少创伤性脑损伤(traumatic brain injury, TBI)以及脱髓鞘疾病中的小胶质细胞M1型极化,从而抑制神经炎症[20]。此外,部分miRNA被证明具有调控小胶质细胞M1-M2转化的潜能。在右脑中动脉阻塞(MCAO)的SD大鼠中,miR-200b抑制剂能够通过靶向转录因子KLF4促进小胶质细胞从M1型转为M2型[21],而在脊髓损伤(spinal cord injury, SCI)以及新生儿缺氧缺血性脑病中,过表达miR-let-7c-5p以及miR-128也能起到促M2型极化作用,从而加速神经修复[22-23]。除上述研究之外,miRNA介导的小胶质细胞损伤-保护双重极化机制已被广泛应用于外源性刺激导致的CNS损伤,包括辐射诱发的脑损伤。然而,miRNA-小胶质细胞调控激活及转化在RBI中功能作用研究仍有待开展。

3.调控星型胶质细胞的A1s-A2s转化:星形胶质细胞与多种CNS疾病的病理生理进程密切关联[24]。近年来,根据其功能,反应性星形胶质细胞被进一步分为神经毒性型-A1星形胶质细胞(A1s)和神经保护型-A2星形胶质细胞(A2s)。神经损伤后,A1s可分泌神经毒素和炎症因子,诱导神经元和少突胶质细胞死亡,破坏血脑屏障(BBB)的完整性[25];而A2s则起神经保护作用,促进神经元存活和组织修复[26],参与BBB重建从而限制外周白细胞向中枢浸润,降低炎症级联损伤的发生[27]。多项研究揭示了多种miRNA可调控星型胶质细胞亚型转化。Li等[28]指出,抑制miR-21的表达,能通过表皮生长因子受体减少视神经损伤模型中星形胶质细胞向A1s的过度活化,并延缓胶质瘢痕的发生。而在人类原代星形胶质细胞中,转染miR-132可降低促癫痫源性因子的表达,这表明miR-132可能是抑制A1s激活的治疗靶标[29]。在SCI中,miR-21通过骨形态发生蛋白1a和1b分别诱导星型胶质细胞向A1s与A2s转化[30]。而过表达的miR-155和miR-146a通过白介素-1R/TLR信号传导,使结节性硬化症中的星型胶质细胞分别向A1和A2型转化[31]。上述发现揭示了反应性星型胶质细胞的双重影响,通过miRNA调控星型胶质细胞A1/A2型转化,可以减轻CNS损伤后的神经炎症,加速神经修复,这有望成为调节RBI进展的潜在策略。

4.自噬-miRNA-胶质细胞网络:自噬由溶酶体介导,通过降解不同的细胞质成分从而维持细胞的稳态,这种自降解过程正逐渐成为衰老和神经变性的核心调节剂。正常自噬反应是保持中枢CNS生理状态和促进神经元存活的关键,最近的研究表明,miRNA-自噬-胶质细胞调控网络可能是其中的关键枢纽[32-33]。据报道,miR-144能作为胶质细胞的自噬诱导剂,通过靶向mTOR信号通路增加脑出血小鼠的小胶质细胞自噬活性及其介导的炎症,而抑制miR-144的表达逆转了该进程并改善了神经功能[34]。相反的是,包裹miR-30d-5p的外泌体对上述自噬活性与相关炎症起到抑制作用,甚至可诱导小胶质细胞向M2极化,从而减少急性缺血性中风(acute ischemic stroke, AIS)的梗塞损伤[35]。此外,据Huang等[36]报道,甲基苯丙胺或脂多糖(LPS)刺激下的星型胶质细胞自噬及其活化能被过表达的miR-124-2hg下调。上述研究表明,miRNA是介导胶质细胞激活和自噬、影响CNS炎症和疾病进展的调节核心。然而,自噬在大多数神经退行性疾病的发病机制中已介于保护或有害的边缘,其在疾病的早期或晚期,甚至不同的细胞类型会呈现出完全相反的作用[37-38],且目前多种自噬调节剂都缺乏特异性。因此,在通过miRNA调控RBI中胶质细胞介导的自噬的同时,更需要关注并把控好自噬调控的度与量。

5.外泌体-miRNA-胶质细胞网络:外泌体是具有生物活性的磷脂双分子层囊泡膜结构体,内含有脂质体、蛋白质、mRNA和miRNA等物质,实现细胞间的物质和信息传递及生理功能的调控[39]。胶质细胞作为CNS的协调者,具有吸收及分泌外泌体的功能,而miRNA作为外泌体所包含的重要传递物,已被证实在多种CNS疾病中发挥作用,本文集中分析外泌体中,miRNA与胶质细胞功能调控的联系。有研究表明,在TBI模型小鼠的小胶质细胞外泌体中miR-124-3p的含量显著升高,其靶向抑制mTOR或TLR4信号传导通路的活性,促进了小胶质细胞M2型极化及神经元的突触再生[40-41]。而含有miR-30d-5p的外泌体通过促进小胶质细胞M2型极化,逆转了AIS的神经损伤[42]。而Xin等[43]等则指出,过表达miR-133b的外泌体促进了星形胶质细胞外泌体的二次释放,其释放的外泌体能进一步改善中风后神经功能,证明了miRNA对胶质细胞外泌体二次释放的影响也是调控疾病进程的策略之一。上述结果表明,包裹miRNA的外泌体可以调控胶质细胞的极化、炎症因子的释放,这可能为RBI干预提供了新的方向。尽管需要进一步研究来确认免疫原性及避免脱靶效应,但这些特征进一步增强了人们对外泌体的关注,外泌体不仅可作为生物标志物,还可作为再生医学得到转化。

6. lncRNA-miRNA-胶质细胞网络:在过去的10年中,转录组分析已经发现了数千个lncRNAs,它们被认为是细胞基因调控网络的基本组成部分。有趣的是,lncRNA在大脑中大量富集,显示出精细的时空表达谱。它们参与CNS发育的精细调控,包括细胞自我更新维持、突触可塑性、突触形成和记忆形成[44]。而涉及lncRNA-miRNA-胶质细胞轴的研究发现,lncRNA可诱导胶质细胞激活状态的转变。在LPS诱导的SCI大鼠脊髓组织中,过表达lncRNA-TUSC7能通过miR-449a调节PPAR-γ进而抑制小胶质细胞的活化和炎症因子的表达[45]。此外,在PD小鼠模型中,lncRNA-SNHG1的下调升高了miR-7的表达,抑制了中脑黑质致密性小胶质细胞的激活以及多巴胺能神经元的丢失[46]。而在脱髓鞘疾病、SCI以及MCAO中,lncRNA-HOTAIR、lncRNA-MALAT1以及lncRNA-SNHG14均表现出靶向miRNA从而抑制小胶质细胞向M1型活化,减轻神经损伤的潜能[19, 47-48]。除此之外,lncRNA-miRNA轴对胶质细胞的凋亡进程也起着调控作用。有研究表明,在胶质瘤中,lncRNA-OIP5-AS1、lncRNAATB、lncRNAGm4419分别通过miR-410、miR-204-3p以及miR-466l介导了胶质瘤的凋亡[49-51]。综上,lncRNA-miRNA作为一种调控轴,在胶质细胞的激活及凋亡等调节方面发挥着作用。而在RBI中,胶质细胞激活与神经元凋亡介导的炎症损伤贯穿病程,进一步了解lncRNA-miRNA-胶质细胞轴在辐射中的作用有较大指导意义。

7. circRNA-miRNA-胶质细胞网络:circRNA是一类新型内源性非编码RNA,它们呈现共价闭合的连续环,在哺乳动物脑中既稳定又丰富,circRNA能充当miRNA的“吸收海绵”,解除miRNA对靶基因的调控作用[52]。此外,大脑中的circRNA优先从神经基因中转化,并参与调控CNS生理和病理[53],在MCAO小鼠中,circRNA-HECTD1作为内源性miRNA海绵起到抑制miR-142活性的作用,并通过调控TIPARP基因的表达进而抑制星形胶质细胞激活[54]。鉴于circRNA在CNS中的潜能,Sekar等[55]对10名阿尔茨海默症患者后扣带回中的星形胶质细胞进行RNA测序,共鉴定了4 438个独特的circRNA。当对这些可被circRNA结合的miRNA及其靶基因的功能进行分析时,发现这些靶基因与免疫炎症密切相关,这与星形胶质细胞作为大脑中免疫传感器的功能一致,进一步确定了circRNA-miRNA-胶质细胞网络在CNS免疫炎症调节中的功能重要性。鉴于circRNA稳定的环状结构及其对miRNA的调控作用,其具备较好的临床应用前景。然而目前国内外尚无circRNA和RBI的相关报道,其在RBI中的调控作用有待深入探究。

三、miRNA的临床应用与限制

基于miRNA丰富的转录后调控作用,其在CNS中的应用也被逐步开拓。除了常规的miRNA侧脑室注射、鞘内注射及病毒转染,也有研究者通过miRNA鼻脑通路给药的方法,使miRNA绕过血脑屏障在CNS发挥调控作用[56-57]。学者Leavitt等[58]则认为干细胞衍生的包裹miRNA的外泌体由于其纳米尺度小、脂质结合力强、容易通过血脑屏障等优点,是一种潜在的RBI治疗方法。目前,有关miRNA作为肝癌治疗分子的临床研究已进入临床Ⅱ期[59],但基于CNS疾病的临床试验却尚未开展。miRNA的稳定性和靶向性是其主要的应用制约因素。已有多项研究尝试通过可降解的纳米粒子或聚合物包裹miRNA,使其能更稳定地到达疾病的中心,但到达CNS的miRNA不可避免地会对神经系统内的多种细胞存在影响,发生脱靶效应等不良影响[3]。要实现miRNA在RBI的临床应用,未来仍需要在稳定分子及调控靶标特异性中付出努力。

四、展望

miRNA-胶质细胞调控网络对CNS疾病的影响机制复杂,并不局限于单一层面,而是多种通路及学说如胶质细胞的辐射敏感性、极化、自噬、外泌体、lncRNA以及circRNA等共同调控交错反应的结果。综上所述,miRNA具有多层面的应用价值。而基于可降解聚合物、外泌体、circRNA等稳定miRNA调控载体的研究开发,将使miRNA在RBI中的调控成为可能。但目前miRNA-胶质细胞调控网络在RBI中的应用研究极少,部分研究揭示了miRNA在辐射后存在差异变化,但miRNA如何发挥具体调控作用、调控的具体通路还有待探究。因此,本文通过概述miRNA-胶质细胞调控网络对CNS疾病的作用研究,旨在从上述错综复杂的调节网络中寻找特异性靶向miRNA调控RBI中胶质细胞的功能靶点,为miRNA在RBI中的应用研究提供理论依据及可能方向。

利益冲突  所有作者均声明不存在利益冲突

作者贡献声明  区铭乾、孙芙蓉负责论文撰写;范炜豪、李敏华负责文献检索及整理;余杨生、林玫君、梁诗韵负责图形制作;崔理立、周海红负责立题、整体设计;所有作者均参与文章的审阅与修改

参考文献
[1]
Klein M, Heimans JJ, Aaronson NK, et al. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas:a comparative study[J]. Lancet, 2002, 360(9343): 1361-1368. DOI:10.1016/s0140-6736(02)11398-5
[2]
Escoter-Torres L, Caratti G, Mechtidou A, et al. Fighting the fire:mechanisms of inflammatory gene regulation by the glucocorticoid receptor[J]. Front Immunol, 2019, 10: 1859. DOI:10.3389/fimmu.2019.01859
[3]
Marangon D, Raffaele S, Fumagalli M, et al. microRNAs change the games in central nervous system pharmacology[J]. Biochem Pharmacol, 2019, 168: 162-172. DOI:10.1016/j.bcp.2019.06.019
[4]
Peng Y, Lu K, Li Z, et al. Blockade of Kv1.3 channels ameliorates radiation-induced brain injury[J]. Neuro Oncol, 2014, 16(4): 528-539. DOI:10.1093/neuonc/not221
[5]
Yang YP, Chien Y, Chiou GY, et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI[J]. Biomaterials, 2012, 33(5): 1462-1476. DOI:10.1016/j.biomaterials.2011.10.071
[6]
Chang JH, Hwang YH, Lee DJ, et al. MicroRNA-203 modulates the radiation sensitivity of human malignant glioma cells[J]. Int J Radiat Oncol Biol Phys, 2016, 94(2): 412-420. DOI:10.1016/j.ijrobp.2015.10.001
[7]
Yue X, Lan F, Xia T. Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7[J]. Mol Ther, 2019, 27(11): 1939-1949. DOI:10.1016/j.ymthe.2019.07.011
[8]
Guo P, Lan J, Ge J, et al. MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia-telangiectasia mutated[J]. Exp Cell Res, 2014, 320(2): 200-208. DOI:10.1016/j.yexcr.2013.10.020
[9]
Guo P, Yu Y, Tian Z, et al. Upregulation of miR-96 promotes radioresistance in glioblastoma cells via targeting PDCD4[J]. Int J Oncol, 2018, 53(4): 1591-1600. DOI:10.3892/ijo.2018.4498
[10]
Chen S, Wang Y, Ni C, et al. HLF/miR-132/TTK axis regulates cell proliferation, metastasis and radiosensitivity of glioma cells[J]. Biomed Pharmacother, 2016, 83: 898-904. DOI:10.1016/j.biopha.2016.08.004
[11]
Chen G, Zhu W, Shi D, et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2[J]. Oncol Rep, 2010, 23(4): 997-1003. DOI:10.3892/or_00000725
[12]
Fan H, Yuan R, Cheng S, et al. Overexpressed miR-183 promoted glioblastoma radioresistance via down-regulating LRIG1[J]. Biomed Pharmacother, 2018, 97: 1554-1563. DOI:10.1016/j.biopha.2017.11.050
[13]
Yang W, Wei J, Guo T, et al. Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance[J]. Exp Cell Res, 2014, 326(1): 22-35. DOI:10.1016/j.yexcr.2014.05.022
[14]
He X, Fan S. hsa-miR-212 modulates the radiosensitivity of glioma cells by targeting BRCA1[J]. Oncol Rep, 2018, 39(3): 977-984. DOI:10.3892/or.2017.6156
[15]
Lan F, Qin Q, Yu H, et al. Effect of glycolysis inhibition by miR-448 on glioma radiosensitivity[J]. J Neurosurg, 2019, 19: 1-9. DOI:10.3171/2018.12.JNS181798
[16]
Lawson LJ, Perry VH, Gordon S. Turnover of resident microglia in the normal adult mouse brain[J]. Neuroscience, 1992, 48(2): 405-415. DOI:10.1016/0306-4522(92)90500-2
[17]
Zhao SC, Ma LS, Chu ZH, et al. Regulation of microglial activation in stroke[J]. Acta Pharmacol Sin, 2017, 38(4): 445-458. DOI:10.1038/aps.2016.162
[18]
Zhou K, Boström M, Ek CJ, et al. Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum[J]. Sci Rep, 2017, 7: 46181. DOI:10.1038/srep46181
[19]
Duan C, Liu Y, Li Y, et al. Sulfasalazine alters microglia phenotype by competing endogenous RNA effect of miR-136-5p and long non-coding RNA HOTAIR in cuprizone-induced demyelination[J]. Biochem Pharmacol, 2018, 155: 110-123. DOI:10.1016/j.bcp.2018.06.028
[20]
Li B, Dasgupta C, Huang L, et al. miRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy[DB/OL]. Springer Nature(UK), 2019, [2020-06-26].https://pubmed.ncbi.nlm.nih.gov/31300734/.
[21]
Wen M, Ye J, Han Y, et al. Hypertonic saline regulates microglial M2 polarization via miR-200b/KLF4 in cerebral edema treatment[J]. Biochem Biophys Res Commun, 2018, 499(2): 345-353. DOI:10.1016/j.bbrc.2018.03.161
[22]
Yang Z, Xu J, Zhu R, et al. Down-regulation of miRNA-128 contributes to neuropathic pain following spinal cord injury via activation of P38[J]. Med Sci Monit, 2017, 23: 405-411. DOI:10.12659/msm.898788
[23]
Lv J, Zeng Y, Qian Y, et al. MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation[J]. Brain Res, 2018, 1685: 91-104. DOI:10.1016/j.brainres.2018.01.032
[24]
Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis[J]. Neurosci Lett, 2014, 565: 30-38. DOI:10.1016/j.neulet.2013.12.071
[25]
Patel DC, Tewari BP, Chaunsali L, et al. Neuron-glia interactions in the pathophysiology of epilepsy[J]. Nat Rev Neurosci, 2019, 20(5): 282-297. DOI:10.1038/s41583-019-0126-4
[26]
Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487. DOI:10.1038/nature21029
[27]
Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury[J]. Nat Med, 2017, 23(7): 818-828. DOI:10.1038/nm.4354
[28]
Li HJ, Pan YB, Sun ZL, et al. Inhibition of miR-21 ameliorates excessive astrocyte activation and promotes axon regeneration following optic nerve crush[J]. Neuropharmacology, 2018, 137: 33-49. DOI:10.1016/j.neuropharm.2018.04.028
[29]
Korotkov A, Broekaart DWM, Banchaewa L, et al. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes[J]. Glia, 2020, 68(1): 60-75. DOI:10.1002/glia.23700
[30]
Sahni V, Mukhopadhyay A, Tysseling V, et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury[J]. J Neurosci, 2010, 30(5): 1839-1855. DOI:10.1523/JNEUROSCI.4459-09.2010
[31]
van Scheppingen J, Iyer AM, Prabowo AS, et al. Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell cultures[J]. Glia, 2016, 64(6): 1066-1082. DOI:10.1002/glia.22983
[32]
Yamamoto A, Yue Z. Autophagy and its normal and pathogenic states in the brain[J]. Ann Rev Neurosci, 2014, 37: 55-78. DOI:10.1146/annurev-neuro-071013-014149
[33]
Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and microglia:novel partners in neurodegeneration and aging[J]. Int J Mol Sci, 2017, 18(3): 598. DOI:10.3390/ijms18030598
[34]
Yu A, Zhang T, Zhong W, et al. miRNA-144 induces microglial autophagy and inflammation following intracerebral hemorrhage[J]. Immunol Lett, 2017, 182: 18-23. DOI:10.1016/j.imlet.2017.01.002
[35]
Jiang M, Wang H, Jin M, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization[J]. Cell Physiol Biochem, 2018, 47(2): 864-878. DOI:10.1159/000490078
[36]
Huang R, Zhang Y, Han B, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG[J]. Autophagy, 2017, 13(10): 1722-1741. DOI:10.1080/15548627.2017.1356975
[37]
Valenzuela V, Nassif M, Hetz C. Unraveling the role of motoneuron autophagy in ALS[J]. Autophagy, 2018, 14(4): 733-737. DOI:10.1080/15548627.2018.1432327
[38]
Bar-Yosef T, Damri O, Agam G. Dual role of autophagy in diseases of the central nervous system[J]. Front Cell Neurosci, 2019, 13: 196. DOI:10.3389/fncel.2019.00196
[39]
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses[J]. Nat Rev Immunol, 2009, 9(8): 581-593. DOI:10.1038/nri2567
[40]
Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons[J]. FASEB J, 2018, 32(1): 512-528. DOI:10.1096/fj.201700673R
[41]
Yang Y, Ye Y, Kong C, et al. miR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway[J]. Neurochem Res, 2019, 44(4): 811-828. DOI:10.1007/s11064-018-02714-z
[42]
Jiang M, Wang H, Jin M, et al. Exosomes from miR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization[J]. Cell Physiol Biochem, 2018, 47(2): 864-878. DOI:10.1159/000490078
[43]
Xin H, Wang F, Li Y, et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells[J]. Cell Transplant, 2017, 26(2): 243-257. DOI:10.3727/096368916X693031
[44]
Hosseini E, Bagheri-Hosseinabadi Z, De Toma I, et al. The importance of long non-coding RNAs in neuropsychiatric disorders[J]. Mol Aspects Med, 2019, 70: 127-140. DOI:10.1016/j.mam.2019.07.004
[45]
Yu Y, Zhu M, Zhao Y, et al. Overexpression of TUSC7 inhibits the inflammation caused by microglia activation via regulating miR-449a/PPAR-γ[J]. Biochem Biophys Res Commun, 2018, 503(2): 1020-1026. DOI:10.1016/j.bbrc.2018.06.111
[46]
Cao B, Wang T, Qu Q, et al. Long noncoding RNA Snhg1 promotes neuroinflammation in Parkinson's disease via regulating miR-7/NLRP3 pathway[J]. Neuroscience, 2018, 388: 118-127. DOI:10.1016/j.neuroscience.2018.07.019
[47]
Zhou HJ, Wang LQ, Wang DB, et al. Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKβ/NF-κB signaling pathway[J]. Am J Physiol Cell Physiol, 2018, 315(1): C52-52C61. DOI:10.1152/ajpcell.00278.2017
[48]
Qi X, Shao M, Sun H, et al. Long non-coding RNA SNHG14 promotes microglia activation by regulating miR-145-5p/PLA2G4A in cerebral infarction[J]. Neuroscience, 2017, 348: 98-106. DOI:10.1016/j.neuroscience.2017.02.002
[49]
Sun WL, Kang T, Wang YY, et al. Long noncoding RNA OIP5-AS1 targets Wnt-7b to affect glioma progression via modulation of miR-410[J]. Biosci Rep, 2019, 39(1). DOI:10.1042/BSR20180395
[50]
Bian EB, Chen EF, Xu YD, et al. Exosomal lncRNAATB activates astrocytes that promote glioma cell invasion[J]. Int J Oncol, 2019, 54(2): 713-721. DOI:10.3892/ijo.2018.4644
[51]
Yu Y, Cao F, Ran Q, et al. Long non-coding RNA Gm4419 promotes trauma-induced astrocyte apoptosis by targeting tumor necrosis factor α[J]. Biochem Biophys Res Commun, 2017, 491(2): 478-485. DOI:10.1016/j.bbrc.2017.07.021
[52]
Wang H, Feng C, Jin Y, et al. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019, 234(7): 10166-10177. DOI:10.1002/jcp.27686
[53]
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5): 870-885. DOI:10.1016/j.molcel.2015.03.027
[54]
Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP:implications for cerebral ischemic stroke[J]. Autophagy, 2018, 14(7): 1164-1184. DOI:10.1080/15548627.2018.1458173
[55]
Sekar S, Cuyugan L, Adkins J, et al. Circular RNA expression and regulatory network prediction in posterior cingulate astrocytes in elderly subjects[J]. BMC Genomics, 2018, 19(1): 340. DOI:10.1186/s12864-018-4670-5
[56]
Mai H, Fan W, Wang Y, et al. Intranasal administration of miR-146a agomir rescued the pathological process and cognitive impairment in an AD mouse model[J]. Mol Ther Nucleic Acids, 2019, 18: 681-695. DOI:10.1016/j.omtn.2019.10.002
[57]
Tao H, Zhao J, Liu T, et al. Intranasal delivery of miR-146a mimics delayed seizure onset in the lithium-pilocarpine mouse model[J]. Mediators Inflamm, 2017, 2017: 6512620. DOI:10.1155/2017/6512620
[58]
Leavitt RJ, Limoli CL, Baulch JE. MiRNA-based therapeutic potential of stem cell-derived extracellular vesicles:a safe cell-free treatment to ameliorate radiation-induced brain injury[J]. Int J Radiat Biol, 2019, 95(4): 427-435. DOI:10.1080/09553002.2018.1522012
[59]
Ottosen S, Parsley TB, Yang L, et al. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122[J]. Antimicrob Agents Chemother, 2015, 59(1): 599-608. DOI:10.1128/AAC.04220-14