中华放射医学与防护杂志  2020, Vol. 40 Issue (7): 554-558   PDF    
电离辐射损伤医学防护剂研究进展
陈军1 , 张李栋1 , 陈乐如2 , 毛应华2 , 汪春晖2 , 王军平1 , 李宏2     
1. 陆军军医大学军事预防医学系, 重庆 400038;
2. 东部战区疾病预防控制中心医学防护所, 南京 210002
[摘要] 当今电离辐射已成为威胁人类健康的重要因素,探索有效的防护策略是放射医学领域研究的重要课题。及时使用辐射防护剂是减少电离辐射对机体正常组织损害最直接有效的方法,大量基于清除自由基、增强DNA损伤修复、诱导辐照组织缺氧及旁效应阻滞等机制的新型辐射防护剂逐渐被开发。本文总结了近年来国内外研究报道的多种辐射防护剂及其潜在的分子生物学机制,为探索新型电离辐射医学防护制剂提供理论参考。
[关键词] 电离辐射    医学防护    自由基    DNA氧化损伤    
Research progress on medical protective agents for ionizing radiation damage
Chen Jun1 , Zhang Lidong1 , Chen Leru2 , Mao Yinghua2 , Wang Chunhui2 , Wang Junping1 , Li Hong2     
1. College of Preventive Medicine, Army Medical University, Chongqing 400038, China;
2. Institute of Medical Protection, Disease Control and Prevention of Eastern Theater Command, Nanjing 210002, China
[Abstract] Nowadays, ionizing radiation has become one of the risk factors for human healthy. Exploring effective protective strategies are important topics in radiological medicine. Timely using of the radiation protection agents are the most direct and effective medical protective strategy for reducing the damage of ionizing radiation to normal tissues of the body. A large number of new radiation protective agents based on mechanisms such as scavenging of free radicals, promoting DNA damage repair, inducing hypoxia of irradiated tissues and blocking bystander effect have been developed gradually. This review summarizes a variety of radiation protective agents, and their potential molecular biological mechanisms reported in recent years, to provide theoretical reference for exploring novel medical protective agents of ionizing radiation.
[Key words] Ionizing radiation    Medical protection    Free radicals    DNA oxidative damage    

随着放射诊疗技术、核医学、核工业技术的发展以及核军事活动的频繁,电离辐射(ionizing radiation,IR)已成为威胁人类健康的重要因素。IR作用于机体时,可通过直接或间接作用,传递能量至生物分子,发生一系列复杂生物化学反应,导致机体发生损伤[1],其机制主要包括诱导自由基生成、破坏生物大分子(如DNA)及改变细胞微环境等[2]。因此,研发针对上述机制的防护剂,是放射医学研究领域亟待解决的关键问题。目前,多种辐射防护剂如巯基化合物、激素类药物、中草药及细胞因子等逐渐被开发。此外,基于纳米材料及新型化合物的辐射防护效应也相继被研究,为探索IR损伤医学防护新策略提供了思路[3]。本文综述了近年来国内外报道的辐射防护剂及其机制,探讨新型辐射防护剂的研发策略。

一、清除IR诱导的自由基

自由基是IR损伤的主要机制,IR作用于机体,其能量可通过直接和间接作用,诱导生物大分子(DNA等)及周围介质(水分子等)发生电离或激发,产生多种自由基(·OH、O2·-、OONO-等),形成级联效应,从而导致细胞发生氧化损伤[1, 4-5]。辐射防护最常见的机制是清除自由基,因此,开发基于自由基高效清除的辐射防护剂是放射医学领域的主要研究方向。研究表明巯基化合物(氨磷汀、胱胺、半胱胺等)[6],天然药/食物(黄酮类、苯丙烷类、二苯乙烯类、维生素C、E等)[7-8]及心血管药物(双嘧达莫、二甲双胍等)[9-10]等化合物或其代谢产物能清除IR诱导产生的自由基。此外,富氢水能选择性还原羟自由基(·OH)和亚硝酸盐阴离子(ONOO-)[11-12],有效减轻IR诱导的氧化应激反应。研究还发现多种中草药活性成分能有效清除活性氧(reactive oxygen species, ROS)减轻细胞损伤,如芍药苷[13]、姜黄素[14]、藏木香[15]等。这些辐射防护剂主要通过参与辐射化学反应对靶分子进行防护,直接吸收自由基能量或减轻其作用,阻断自由基“链式反应”,能提供氢原子促进损伤分子修复,或与靶分子、细胞结合形成复合体等,从而抑制炎症反应及细胞凋亡,减轻DNA等靶分子氧化损伤。清除自由基是辐射防护的基本策略,但其实际临床救治中局限性较大[16],因此研制新型清除自由基的辐射防护剂仍是重中之重。

细胞在氧化应激状态下,能诱导表达多种内源性保护因子如超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶、谷胱甘肽和褪黑素等发挥抗氧化作用。如MnSOD可通过催化氧自由基转化为H2O2,并在过氧化氢酶的作用下生成H2O和O2[17]。还原型谷胱甘肽(glutathione, GSH)的巯基活性基团能直接清除ROS,形成的氧化型GSH也可抑制ROS形成,从而减轻细胞氧化应激[18]。褪黑素作为松果体合成并分泌的天然激素,具有抗氧化、抗炎和抗癌等生理活性,能够清除IR产生的不同类型的自由基,同时对肿瘤细胞具有显著的放疗增敏效应[19]。体内存在的这些内源性活性物质具有抗氧化活性,补充或促进其分泌能催化自由基分解、平衡胞内氧化还原状态起到辐射防护的作用,也能调节机体细胞的生理活性促进细胞恢复功能[20],因此,研发此类双重效果的制剂,对辐射损伤防护大有裨益。

目前大多数传统的辐射防护剂不良反应较大、防护时间窗较窄及给药途径受限等,临床仍缺乏理想的抗辐射药物[21]。近年来,多功能纳米材料的发展逐渐应用于生物领域,其主要以载体形式建立药物递送系统增加辐射防护剂的生物利用度或利用自身固有的辐射防护活性发挥作用[22]。Wu等[23]研究发现,聚乳酸-糖醇内酯(PLGA)微球包裹辐射防护药物氨磷汀(WR2721),能增强药物的稳定性和延长防护时间窗,诸如此类的纳米载体还有壳聚糖[24]、纳米二氧化硅[25]、纳米竹炭[26]和固体脂质纳米粒[27]等。Li等[28]研究发现,聚乙二醇(PEG)修饰的纳米氧化铈具有较高的稳定性及辐射防护活性且细胞毒性较低,自身固有辐射防护活性的纳米材料还有碳纳米材料(C60富勒烯、石墨烯、碳纳米管、石墨炔等)[22, 29]、贵金属纳米材料(Ag、Pt等)[22, 30]和过渡金属硫族化合物TMDCs (MoS2、Bi2Se3等)[31-32]等。其中绝大多数纳米材料辐射防护剂的研发机制主要为清除自由基,另外,促进DNA损伤修复、诱导缺氧和抑制凋亡通路等具有前景的纳米技术正在开发应用中[22]

二、增强DNA损伤修复

IR作用于细胞,胞浆中的水能吸收大部分射线能量(>60%),剩余的能量及自由基能直接进入细胞核导致DNA损伤,细胞核中染色质结构紧密,游离水分极少,DNA对IR最敏感[33]。其中,DNA双链断裂(DSB)是IR损伤最主要也是危害最大的形式,单个DSB即可导致基因组不稳定[34]。辐射防护最重要的机制是DNA损伤修复,细胞周期中DSBs主要通过非同源DNA末端连接(NHEJ)和同源重组(HR)途径修复[35-36]。Chandra等[37]研究发现,蛋白酶体抑制剂硼替佐米能通过泛素-蛋白酶体途径作用于非同源末端连接通路蛋白,促进DSB修复,并能减轻放疗引起的骨质疏松症。Gao等[38]发现,白藜芦醇通过下调去乙酰化酶SIRT1,促进酪氨酰-tRNA合成酶(TyrRS)乙酰化,诱导细胞S期阻滞,从而促进DNA同源重组修复效率,减少IR诱导的细胞凋亡,提示促进TyrRS乙酰化及其向细胞核转移或可成为新的辐射防护靶点。

另外,虫草素作为天然的Nrf2激动剂,通过直接作用于AMPK通路,可有效缓解DNA损伤和防止细胞衰老,以预防放射性溃疡[39]。激活Toll样受体(TLR)可通过上调NF-κB信号通路,增强细胞对IR的抵抗力,TLR2、TLR4、TLR5和TLR9及其配体激动剂能显著抑制IR诱导的细胞DNA损伤,促进细胞存活[40]。1, 4-二巯基苏糖醇(DTT)能抑制p53基因表达,分别促进抗凋亡蛋白Bcl-2和抑制Bax表达及下调caspase 3/9,从而减少造血和肠道细胞凋亡和促进DNA损伤修复[41]。香草醛类衍生物VND3207通过调控p53/NOXA信号通路,触发细胞周期阻滞,提高超氧化物歧化酶水平和总抗氧化能力,降低DNA氧化损伤和脂质过氧化,从而恢复肠道菌群平衡,保护肠道免受辐射损伤[42]

IR是DNA损伤常见的诱发因素,会抑制细胞周期进程、DNA复制甚至细胞死亡[43],促进DNA损伤修复能减轻IR危害、挽救细胞生命,对维持IR诱导的基因组稳定性具有重要的意义。NHEJ(贯穿全细胞周期)和HR(G1期受抑制)修复途径研究关注度大[35-36],其机制发掘逐渐深入,能启发相关靶点的辐射防护剂研发。此外,中草药有效成分、目的性合成新化合物、现有药物的重利用和改进,能增强DNA损伤修复。DNA作为机体最重要的生物大分子之一,开发基于增强DNA损伤修复的辐射防护剂具有广阔前景。

三、诱导辐照组织缺氧

受照组织存在氧效应,即IR损伤效应随组织氧浓度升高而增强,其主要机制为氧亲电子能力较强,能夺走靶分子自身修复电子,同时与水合电子eaq-快速结合生成超氧阴离子O2·-[44],缺氧环境可通过减少ROS的生成降低IR的损伤效应[45]。研究表明,通过基因敲除或药物DMOG抑制脯氨酰羟化酶结构域PHD,能促进缺氧诱导因子HIF2和血管内皮生长因子(VEGF)表达,减缓和保护辐射诱导的胃肠道毒性[46]。Wong等[47]发现一种新药SN38023能诱导细胞缺氧,选择性的代谢DNA依赖的蛋白激酶,从而减轻小鼠IR损伤。Forristal等[48]研究发现,粒细胞集落刺激因子(G-CSF)能提高骨髓耗氧量,通过稳定缺氧诱导因子(HIF-1α)促进造血干细胞(HSCs)增殖、自我更新和归巢。HIF-1α稳定剂FG4497可协同G-CSF动员HSCs,诱导正常组织缺氧以减轻IR损伤。因此,研发能诱导组织短暂缺氧的制剂,能一定程度减轻IR损伤,但需要指出的是受照后在特定条件下供氧方可促进损伤修复[1, 44-45]

四、阻滞旁效应

受照细胞除可以通过缝隙连接方式与非受照细胞直接通讯外,还可通过传递信号分子进行细胞间通讯,称为辐射诱导旁效应(radiation-induced bystander effect, RIBE)[49]。通过RIBE传递的信号分子主要包括3类:一是分泌小分子物质(ROS、NO等)以自由扩散方式快速穿过旁细胞膜;二是分泌蛋白因子(TNFα、TGF-β1等),通过主动运输到达胞外,并与旁细胞膜受体蛋白结合进行信号转导;三是分泌含受照细胞RNA、蛋白质等物质的膜结构囊泡,以出芽的方式释放出胞外被受体细胞识别并吸收[50]

研究发现,硒代胱氨酸衍生物DSePA可通过抑制NF-κB/IL-17/G-CSF/中性粒细胞轴,显著降低IL1-β、ICAM-1、E-selectin、IL-17和TGF-β等细胞因子分泌,预防IR诱导的放射性肺炎[51]。Yi等[52]研究表明,1, 2-丙二醇(PPD)通过提高HSCs中抗氧化酶活性,抑制细胞凋亡,并促进血清中G-CSF和IL-6水平表达,减轻全身照射诱导的小鼠造血系统损伤。Xu等[53]研究发现,外泌体介导的miRNA转移在IR诱导的旁观者效应中起着重要作用,通过抑制miR-21表达,可一定程度减弱IR的RIBE效应。RIBE在IR诱导机体损伤中的作用不容忽视,但其机制尚需进一步研究[54],基于减轻RIBE的辐射防护剂具有较大的应用前景。

五、展望

综上所述,根据IR损伤机制,防护策略及防护剂的研发涵盖了IR损伤各个过程,主要着重在IR损伤初始阶段,包括清除或减少IR诱导产生的自由基、增强在生命活动中发挥重要功能的生物敏感分子(如DNA)的修复或保护其免受损伤、降低氧分压抑制IR损伤的氧效应和减轻RIBE以缓解机体损伤等。尽管经过近几十年的反复筛选验证,辐射防护剂的效果仍不理想。氨磷汀(WR2721)作为唯一被美国食品药品监督管理局(FDA)批准的辐射防护剂,去磷酸化后形成活性代谢产物WR1065,选择性地多分布于正常组织细胞中,可通过清除自由基、诱导细胞缺氧、保护DNA及促进DNA损伤修复等机制发挥辐射防护特性,但毒副作用较大,且临床效果不尽人意[55]

研究者们开始拓展研发受辐照后早期使用能减轻IR损伤、促进恢复的药物,如常规药物修饰、中草药有效成分提纯、多功能纳米材料的生物学应用、新型化合物改进及细胞因子筛选等,通过干预细胞代谢或参与神经内分泌调控等机制,改变机体生理、生化状态,从而有效减轻副作用、延长防护时间窗、简化给药途径及促进修复,提高IR损伤患者生存质量[1, 56-57]。已有研究证实辐射防护中神经内分泌调控是有效的策略,基因和干细胞疗法作为治疗性辐射对抗措施正在开发中,希望通过组织再生尽量减少IR暴露的危害[56-59]。随着对IR损伤细胞机制的研究不断深入,多种新型辐射防护剂不断被开发,然而其最佳防护策略及制剂安全性还有待研究。

利益冲突  无

作者贡献声明  陈军和张李栋收集文献和撰写初稿;陈乐如、毛应华和汪春晖修改和完善论文;王军平和李宏拟定写作思路、指导论文撰写

参考文献
[1]
Sage E, Shikazono N. Radiation-induced clustered DNA lesions:Repair and mutagenesis[J]. Free Radic Biol Med, 2017, 107: 125-135. DOI:10.1016/j.freeradbiomed.2016.12.008
[2]
Reisz JA, Bansal N, Qian J, et al. Effects of ionizing radiation on biological molecules——mechanisms of damage and emerging methods of detection[J]. Antioxid Redox Signal, 2014, 21(2): 260-292. DOI:10.1089/ars.2013.5489
[3]
Kamran MZ, Ranjan A, Kaur N, et al. Radioprotective agents:strategies and translational advances[J]. Med Res Rev, 2016, 36(3): 461-493. DOI:10.1002/med.21386
[4]
刘蕾, 崔建国, 蔡建明. 中子辐射损伤效应、机制及防护措施研究进展[J]. 中华放射医学与防护杂志, 2017, 37(8): 635-640.
Liu L, Cui JG, Cai JM. Research progress on the mechanism of radiation damage and prevention of neutron radiation[J]. Chin J Radiol Med Prot, 2017, 37(8): 635-640. DOI:10.3760/cma.j.issn.0254-5098.2017.08.016
[5]
Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks:a direct and indirect lighting up[J]. Radiother Oncol, 2013, 108(3): 362-369. DOI:10.1016/j.radonc.2013.06.013
[6]
Hofer M, Falk M, Komůrková D, et al. Two new faces of amifostine:protector from DNA damage in normal cells and inhibitor of DNA repair in cancer cells[J]. J Med Chem, 2016, 59(7): 3003-3017. DOI:10.1021/acs.jmedchem.5b01628
[7]
Yahyapour R, Shabeeb D, Cheki M, et al. Radiation protection and mitigation by natural antioxidants and flavonoids:implications to radiotherapy and radiation disasters[J]. Curr Mol Pharmacol, 2018, 11(4): 285-304. DOI:10.2174/1874467211666180619125653
[8]
Fischer N, Seo EJ, Efferth T. Prevention from radiation damage by natural products[J]. Phytomedicine, 2018, 47: 192-200. DOI:10.1016/j.phymed.2017.11.005
[9]
Barzegar A. Proton-coupled electron-transfer mechanism for the radical scavenging activity of cardiovascular drug dipyridamole[J]. PLoS One, 2012, 7(6): e39660. DOI:10.1371/journal.pone.0039660
[10]
Zhao D, Yang J, Yang L. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes[J]. Oxid Med Cell Longev, 2017(2017): 6437467. DOI:10.1155/2017/6437467
[11]
Kang KM, Kang YN, Choi IB, et al. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors[J]. Med Gas Res, 2011, 1(1): 11. DOI:10.1186/2045-9912-1-11
[12]
李宏, 郝玉徽, 李蓉, 等. 氢气在放射医学研究中的应用进展[J]. 中华放射医学与防护杂志, 2014, 34(1): 77-78.
Li H, Hao YH, Li R, et al. Advances in the application of hydrogen in radiology[J]. Chin J Radiol Med Prot, 2014, 34(1): 77-78. DOI:10.3760/cma.j.issn.0254-5098.2014.01.020
[13]
Li CR, Zhou Z, Zhu D, et al. Protective effect of paeoniflorin on irradiation-induced cell damage involved in modulation of reactive oxygen species and the mitogen-activated protein kinases[J]. Int J Biochem Cell Biol, 2007, 39(2): 426-438. DOI:10.1016/j.biocel.2006.09.011
[14]
Wu L, Li F, Zhao C, et al. Effects and mechanisms of traditional Chinese herbal medicine in the treatment of ischemic cardiomyopathy[J]. Pharmacol Res, 2020, 151: 104488. DOI:10.1016/j.phrs.2019.104488
[15]
Mohan S, Gupta D. Role of Nrf2-antioxidant in radioprotection by root extract of Inula racemosa[J]. Int J Radiat Biol, 2019, 95(8): 1122-1134. DOI:10.1080/09553002.2019.1607607
[16]
Patyar RR, Patyar S. Role of drugs in the prevention and amelioration of radiation induced toxic effects[J]. Eur J Pharmacol, 2018, 819: 207-216. DOI:10.1016/j.ejphar.2017.12.011
[17]
Jin C, Qin L, Shi Y, et al. CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection[J]. Free Radic Biol Med, 2015, 81: 77-87. DOI:10.1016/j.freeradbiomed.2014.12.026
[18]
Lohan SB, Vitt K, Scholz P, et al. ROS production and glutathione response in keratinocytes after application of β-carotene and VIS/NIR irradiation[J]. Chem Biol Interact, 2018, 280: 1-7. DOI:10.1016/j.cbi.2017.12.002
[19]
Farhood B, Goradel NH, Mortezaee K, et al. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization[J]. Clin Transl Oncol, 2019, 21(3): 268-279. DOI:10.1007/s12094-018-1934-0
[20]
Mishra KN, Moftah BA, Alsbeih GA. Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures[J]. Biomed Pharmacother, 2018, 106: 610-617. DOI:10.1016/j.biopha.2018.06.150
[21]
Johnke RM, Sattler JA, Allison RR. Radioprotective agents for radiation therapy:future trends[J]. Future Oncol, 2014, 10(15): 2345-2357. DOI:10.2217/fon.14.175
[22]
Xie J, Wang C, Zhao F, et al. Application of multifunctional nanomaterials in radioprotection of healthy tissues[J]. Adv Healthc Mater, 2018, 7(20): e1800421. DOI:10.1002/adhm.201800421
[23]
Wu HY, Hu ZH, Jin T. Sustained-release microspheres of amifostine for improved radio-protection, patient compliance, and reduced side effects[J]. Drug Deliv, 2016, 23(9): 3704-3711. DOI:10.1080/10717544.2016.1223222
[24]
Yi J, Cheng C, Li S, et al. Preparation optimization and protective effect on 60Co-γ radiation damage of pinus koraiensis pinecone polyphenols microspheres[J]. Int J Biol Macromol, 2018, 113: 583-591. DOI:10.1016/j.ijbiomac.2018.02.131
[25]
Song Y, Li Y, Xu Q, et al. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery:advances, challenges, and outlook[J]. Int J Nanomed, 2016, 12: 87-110. DOI:10.2147/IJN.S117495
[26]
Garcês A, Amaral MH, Sousa Lobo JM, et al. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use:a review[J]. Eur J Pharm Sci, 2018, 112: 159-167. DOI:10.1016/j.ejps.2017.11.023
[27]
Xie J, Yong Y, Dong X, et al. Therapeutic nanoparticles based on curcumin and bamboo charcoal nanoparticles for chemo-photothermal synergistic treatment of cancer and radioprotection of normal cells[J]. ACS Appl Mater Interfaces, 2017, 9(16): 14281-14291. DOI:10.1021/acsami.7b02622
[28]
Li H, Yang ZY, Liu C, et al. PEGylated ceria nanoparticles used for radioprotection on human liver cells under γ-ray irradiation[J]. Free Radic Biol Med, 2015, 87: 26-35. DOI:10.1016/j.freeradbiomed.2015.06.010
[29]
Maiti D, Tong X, Mou X, et al. Carbon-based nanomaterials for biomedical applications:a recent study[J]. Front Pharmacol, 2019, 9: 1401. DOI:10.3389/fphar.2018.01401
[30]
Wang JY, Mu X, Li Y, et al. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation-induced ROS via surface-mediated bond breaking[J]. Small, 2018, 14(13): e1703736. DOI:10.1002/smll.201703736
[31]
Zhang XD, Zhang J, Wang J, et al. Highly catalytic nanodots with renal clearance for radiation protection[J]. ACS Nano, 2016, 10(4): 4511-4519. DOI:10.1021/acsnano.6b00321
[32]
Du J, Gu Z, Yan L, et al. Poly (vinylpyrollidone)-and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues[J]. Adv Mater, 2017, 29(34): 10. DOI:10.1002/adma.201701268
[33]
Qiu GH. Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation[J]. Mutat Res Rev Mutat Res, 2015, 764: 108-117. DOI:10.1016/j.mrrev.2015.04.001
[34]
Durante M, Bedford JS, Chen DJ, et al. From DNA damage to chromosome aberrations:joining the break[J]. Mutat Res, 2013, 756(1-2): 5-13. DOI:10.1016/j.mrgentox.2013.05.014
[35]
Chang HHY, Pannunzio NR, Adachi N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair[J]. Nat Rev Mol Cell Biol, 2017, 18(8): 495-506. DOI:10.1038/nrm.2017.48
[36]
Arnoult N, Correia A, Ma J, et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN[J]. Nature, 2017, 549(7673): 548-552. DOI:10.1038/nature24023
[37]
Chandra A, Wang L, Young T, et al. Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis[J]. FASEB J, 2018, 32(1): 52-62. DOI:10.1096/fj.201700375R
[38]
Gao P, Li N, Ji K, et al. Resveratrol targets TyrRS acetylation to protect against radiation-induced damage[J]. FASEB J, 2019, 33(7): 8083-8093. DOI:10.1096/fj.201802474RR
[39]
Wang Z, Chen Z, Jiang Z, et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents[J]. Nat Commun, 2019, 10(1): 2538. DOI:10.1038/s41467-019-10386-8
[40]
王明宇, 王雯雯, 查旭东, 等. 靶向Toll样受体通路辐射防护剂研究进展[J]. 中华放射医学与防护杂志, 2019, 39(7): 549-553.
Wang MY, Wang WW, Zha XD, et al. Progresses in radiation protective agents targeting Toll-like receptor pathway[J]. Chin J Radiol Med Prot, 2019, 39(7): 549-553. DOI:10.3760/cma.j.issn.0254-5098.2019.07.013
[41]
Li K, Zhang J, Cao J, et al. 1, 4-Dithiothreitol treatment ameliorates hematopoietic and intestinal injury in irradiated mice:potential application of a treatment for acute radiation syndrome[J]. Int Immunopharmacol, 2019, 76: 105913. DOI:10.1016/j.intimp.2019.105913
[42]
Li M, Gu MM, Lang Y, et al. The vanillin derivative VND3207 protects intestine against radiation injury by modulating p53/NOXA signaling pathway and restoring the balance of gut microbiota[J]. Free Radic Biol Med, 2019, 145: 223-236. DOI:10.1016/j.freeradbiomed.2019.09.035
[43]
Lazzaro F, Giannattasio M, Puddu F, et al. Checkpoint mechanisms at the intersection between DNA damage and repair[J]. DNA Repair (Amst), 2009, 8(9): 1055-1067. DOI:10.1016/j.dnarep.2009.04.022
[44]
Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology[J]. Annu Rev Pathol, 2014, 9: 47-71. DOI:10.1146/annurev-pathol-012513-104720
[45]
Rouschop KM, Dubois LJ, Keulers TG, et al. PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS[J]. Proc Natl Acad Sci USA, 2013, 110(12): 4622-4627. DOI:10.1073/pnas.1210633110
[46]
Taniguchi CM, Miao YR, Diep AN, et al. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2[J]. Sci Transl Med, 2014, 6(236): 236ra64. DOI:10.1126/scitranslmed.3008523
[47]
Wong WW, Jackson RK, Liew LP, et al. Hypoxia-selective radiosensitisation by SN38023, a bioreductive prodrug of DNA-dependent protein kinase inhibitor IC87361[J]. Biochem Pharmacol, 2019, 169: 113641. DOI:10.1016/j.bcp.2019.113641
[48]
Forristal CE, Nowlan B, Jacobsen RN, et al. HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α[J]. Leukemia, 2015, 29(6): 1366-1378. DOI:10.1038/leu.2015.8
[49]
Chevalier F, Hamdi DH, Saintigny Y, et al. Proteomic overview and perspectives of the radiation-induced bystander effects[J]. Mutat Res Rev Mutat Res, 2015, 763: 280-293. DOI:10.1016/j.mrrev.2014.11.008
[50]
Klammer H, Mladenov E, Li F, et al. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status[J]. Cancer Lett, 2015, 356(1): 58-71. DOI:10.1016/j.canlet.2013.12.017
[51]
Gandhi KA, Goda JS, Gandhi VV, et al. Oral administration of 3, 3'-diselenodipropionic acid prevents thoracic radiation induced pneumonitis in mice by suppressing NF-κB/IL-17/G-CSF/neutrophil axis[J]. Free Radic Biol Med, 2019, 145: 8-19. DOI:10.1016/j.freeradbiomed.2019.09.009
[52]
Yi L, Tian M, Piao C, et al. The protective effects of 1, 2-propanediol against radiation-induced hematopoietic injury in mice[J]. Biomed Pharmacother, 2019, 114: 108806. DOI:10.1016/j.biopha.2019.108806
[53]
Xu S, Wang J, Ding N, et al. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect[J]. RNA Biol, 2015, 12(12): 1355-1363. DOI:10.1080/15476286.2015.1100795
[54]
Rödel F, Frey B, Multhoff G, et al. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation[J]. Cancer Lett, 2015, 356(1): 105-113. DOI:10.1016/j.canlet.2013.09.015
[55]
Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine:the first selective-target and broad-spectrum radioprotector[J]. Oncologist, 2007, 12(6): 738-747. DOI:10.1634/theoncologist.12-6-738
[56]
Du C, Xu Y, Yang K, et al. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1[J]. Leukemia, 2017, 31(4): 945-956. DOI:10.1038/leu.2016.285
[57]
Chen S, Du C, Shen M, et al. Sympathetic stimulation facilitates thrombopoiesis by promoting megakaryocyte adhesion, migration, and proplatelet formation[J]. Blood, 2016, 127(8): 1024-1035. DOI:10.1182/blood-2015-07-660746
[58]
Chen S, Qi Y, Wang S, et al. Melatonin enhances thrombopoiesis through ERK1/2 and Akt activation orchestrated by dual adaptor for phosphotyrosine and 3-phosphoinositides[J]. J Pineal Res, 2020, e12637. DOI:10.1111/jpi.12637
[59]
Tang Y, Hu M, Xu Y, et al. Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β1[J]. Theranostics, 2020, 10(5): 2229-2242. DOI:10.7150/thno.40559