2. 宁波市华慈医院放射科 315040;
3. 南京医科大学附属常州二院放射科, 常州 213000
2. Department of Radiology, Ningbo HuaciHosipital, Ningbo 315040, China;
3. Department of Radiology, Changzhou No.2 Hospital Affiliated to Nanjing Medical School, Changzhou 213000, China
冠状动脉CT血管成像(coronary artery computed tomography angiography,CCTA)是目前冠状动脉疾病首选的无创影像检查方法,广泛应用于临床[1-2]。慢性肾脏疾病(chronic kidney disease,CKD)患者由于碘对比剂肾病(contrast-induced nephropathy,CIN)发生率高,被视为CCTA检查的相对禁忌[3-4], 大量患者失去冠状动脉的影像评估机会。随着CKD发病率不断升高[5-7],CKD相关性冠状动脉疾病发病率也不断升高[5-6, 8],为该类患者设计合理的CCTA成像方案,提高检查的安全性有一定的临床需求。本研究尝试使用低电压联合较低容量的等渗低浓度碘对比剂对CKD患者行CCTA检查(即“三低”CCTA检查方案),旨在评估该方案的图像质量和其对CKD患者肾功能的影响。
资料与方法1.基线资料:前瞻性选取2016年1月—2018年7月南京医科大学附属常州二院就诊的CKD患者36例为研究对象。入组标准:慢性肾病患病史,伴或不伴血清肌酐水平升高;临床伴有明显的冠心病症状,需进一步行冠状动脉CTA检查。排除标准:高龄或未成年患者(<18岁或>75岁);严重心律不齐或房颤;有碘对比剂过敏史;严重的肾功能衰竭。所有入组患者按照随机数表法分为对照组(13例)和观察组(23例),行冠状动脉CT成像检查。两组患者的平均年龄、性别比例、BMI值差异无统计学意义(P>0.05,表 1)。本研究经本医院伦理委员会审核同意(审批号2017021),所有患者检查前均签署知情同意书。
![]() |
表 1 两组慢性肾病患者的基线资料比较 Table 1 Comparison of baseline data between the two groups of patients with chronic kidney disease |
2.检查方法:所有患者在注射碘对比剂前6 h和注射后24 h内静脉注射0.9%生理盐水50 ml/h,并嘱咐适量饮水,以充分水化。患者仰卧位足先进,连接心电监护后训练屏气,硝酸甘油0.5~1.0 mg舌下喷雾。使用德国西门子公司Definition Flash双源CT机,扫描范围从气管隆突下至左心膈角下。高压注射器经肘正中静脉注射对比剂,注射速率4.5 ml/s,然后以相同速率注射30 ml生理盐水,对照组使用常规120 kV电压扫描,碘普罗胺高浓度碘对比剂370 mgI/ml(德国拜耳公司),注射总量为63~85 ml,传统滤波反投影法重建(FBP);观察组根据患者体质量指数(BMI)采用低电压扫描,BMI≥25 kg/m2使用100 kV,BMI<25 kg/m2使用80 kV,用碘克沙醇等渗低浓度碘对比剂270 mgI/ml(上海通用电气药业有限公司),注射容量45 ml,后续加30~40 ml生理盐水,使用迭代算法重建(SAFIRE)。两组扫描时均开启自动管电流调制(4D CareDose),采用团注追踪注射法(bolus tracking),感兴趣区(ROI)设置于升主动脉根部,触发阈值100 HU,延迟时间6 s。扫描参数为探测器准直128×0.6 mm,层厚0.75 mm,机架旋转时间0.28 s。心率平稳且 < 75次/min者采集时相为65%~75% R-R间期;心率>75次/min且 < 90次/min时采集时相为35%~45% R-R间期;心率>90次/min或心律不齐时采集时相为30%~80% R-R间期。扫描后重建扫描数据并传输至工作站(syngoMMWP VE36 A)。观察组单幅图像矩阵512×512,采用细腻平滑的B26f重组算法。使用Circulation工作站软件对所有患者的冠状动脉CT扫描数据进行后处理重建,容积再现(volume rendering,VR)、最大密度投影(maximum intensity projection,MIP)、多平面重组(multiplanar reformation,MPR)和曲面重组(curve planar reformation,CPR)等。测量左前降支(LAD)、右冠状动脉(RCA)和左旋回支(LCX)等大血管近端的CT值,注意避开钙化斑块和软斑块。
3.图像质量评价
(1) 客观评价:ROI放在上述各大血管的近端,小心避开钙化、斑块及狭窄。信噪比(SNR)=冠状动脉管腔CT值/图像噪声;对比噪声比(CNR)=(冠状动脉管腔CT值-前胸壁肌肉平均CT值)/图像噪声,图像噪声为前胸壁空白处平均CT值的SD值。
(2) 主观评价:根据美国心脏病学会冠状动脉15段分段法命名,对直径≥1.5 mm的冠状动脉进行节段分析。由两名影像科副主任医生在未告知扫描条件及临床资料的情况下对冠状动脉图像质量进行评价,二者意见不一致时共同商定结果。评价结果:4分,图像质量优秀,冠状动脉显示清晰,血管连续、边缘锐利无伪影;3分,图像质量为良好,血管连续、边缘少量伪影但不影响管腔评价;2分,图像质量一般,血管显示连续,边缘中度伪影、管腔内显示模糊,难以评价;1分:图像质量差,冠状动脉错位、中断,血管边缘严重伪影,管腔不能评价。≥3分为图像质量合格的节段。
4.辐射剂量计算:扫描完成后记录两组患者扫描后的辐射剂量,包括容积剂量指数(CT dose index,CTDIvol)、剂量长度乘积(dose-length product, DLP),有效剂量(E)=DLP×k,k=0.014 mSv·mGy-1·cm-1。
5.碘摄入量和肾不良反应评价:两组的总碘量以各自的浓度乘以注射容量计算。肾不良反应评价以检查前和检查后72 h内血清肌酐清除率差值的百分比为依据。对血清肌酐清除率急速下降者,必要时透析治疗。
6.统计学处理:应用SPSS 21.0软件进行数据统计,年龄、心率、BMI值、主客观图像质量评分、辐射剂量和血清肌酐升高水平等计量资料经正态检验符合正态分布,结果用x±s表示,组间比较采用独立样本t检验。总碘量差值以计数资料使用百分比表示,采用χ2检验。P<0.05为差异有统计学意义。
结果1.基线资料评价:36例患者中有32例患者顺利完成冠状动脉CT检查,其中对照组12例,观察组20例。对照组包括肾小球肾炎6例,狼疮型肾炎2例,高血压肾病2例和其他未明原因肾病2例;观察组包括肾小球肾炎11例,狼疮型肾炎3例,糖尿病肾病1例,高血压肾病2例,其他未明原因肾病3例,两组CKD患者病因比较差别无统计学意义(P>0.05)。
2.图像质量主观评价:对照组共评价冠状动脉180段,其中3分以上169段;观察组共评价冠状动脉301段,其中3分以上275段,两组患者图像质量的主观评价差异无统计学意义(P>0.05)。客观评价:两组患者LAD、RCA和LCX的SNR和CNR差异均无统计学意义(P>0.05,表 2)。
![]() |
表 2 两组慢性肾病患者冠状动脉不同段血管SNR和CNR值的比较(x±s) Table 2 Comparison of SNR and CNR of coronary arteries for different segments between two groups of patients with chronic kidney disease (x±s) |
3.辐射剂量、碘摄入量和肾功能评价:对照组和观察组平均辐射剂量E分别为(2.85±0.59)和(1.09±0.19)mSv,差异有统计学意义(t=20.260,P<0.05),观察组降低了61.75%;平均碘摄入量分别为(2.71±0.37)和(1.22±0.00)g,差异有统计学意义(t=18.162,P<0.05),观察组降低了54.70%。碘对比剂注射后72 h内血清肌酐清除率下降率差异有统计学意义(χ2=9.004,P<0.05,表 3)。
![]() |
表 3 两组慢性肾病患者所接受的辐射剂量、碘摄入量及肾毒性发生率比较(x±s) Table 3 Comparison of radiation dose, iodine intake and incidence of renal toxicity received by two groups of patients with chronic kidney disease(x±s) |
讨论
CKD是常见的临床疾病,占医院获得性肾衰竭的前3位[4, 9]。由于肾功能异常,CKD患者发生CIN的概率较正常患者升高[9-10],而该类患者的冠状动脉疾病发病率并不低,因此,设计合理的检查方案,降低该类患者CCTA检查的风险有重要临床意义。碘对比剂注射后48~72 h内血清肌酐水平增加25%以上或浓度增加超过44.2 μmol/l[9, 11-12], 并排除其他因素,可以诊断为CIN。约80%的患者血清肌酐升高发生在24 h内[10],原因可能包括对比剂的渗透压水平、黏滞作用和碘对比剂的不良反应损伤肾小球和肾小管,导致滤过率下降,血清肌酐水平升高[11-12]。近来研究认为碘对比剂的存在对X射线辐射所致的DNA损伤有放大效应[13-14],由于碘对比剂主要通过肾脏代谢,CT扫描时高浓度的碘对比剂集聚在肾小球和肾小管内,该效应可能加重肾小球的系膜细胞和肾小管上皮细胞的DNA损伤。因此,降低肾脏内的碘对比剂的浓度与使用等渗对比剂或降低对比剂黏滞性同等重要。另外,低电压扫描中X射线对碘对比剂衰减增加,导致碘对比剂密度增高,该特点恰好可弥补低浓度碘对比剂在常规电压下血管成像密度较低的缺陷,另外使用迭代算法可有效降低背景噪声,提高图像质量[15-16]。本研究使用低电压扫描,联合等渗低浓度碘对比剂,和使用较低的容量,并在扫描前充分水化。旨在减少肾脏对碘对比剂的滤过负荷,并减少碘对比剂的渗透压、黏滞性和对X射线致DNA损伤的放大效应等因素对肾小球和肾小管的损伤,降低CIN的发生率,同时保证等渗低浓度碘对比剂的血管成像效果[17-18]。本研究显示,CCTA检查对观察组CKD患者血清肌酐清除率的影响较对照组明显降低,辐射剂量也大幅度下降,但两组的图像质量差异并无统计学意义。
Prazeres等[19]、Mehran和Nikolsky[20]研究证实,使用“双低”冠状动脉CT成像可大幅度降低辐射剂量,传统推荐的CCTA检查碘对比剂浓度要求350或370 mgI/ml,剂量推荐为0.8~1.0 ml/kg,速率5 ml/s[10],总注射容量约65~85 ml,总注射时间为13~17 s,团注追踪法(Bolus tracking)的使用使得增强扫描时间选择的准确性更好,将检测点设置在降主动脉,自动触发扫描,可使扫描触发时间与目标血管碘对比剂达峰值的时间点更精确匹配,减少无效的碘对比剂注射[20]。本研究选择45 ml碘对比剂容量,注射速率4.5 ml/s,总注射时间10 s,后续以同样速率注射30 ml生理盐水到达左心室时间约为6.7 s,有利于将上腔静脉内剩余对比剂不间断推入右心室。因此,设定45 ml的碘对比剂注射量理论上足够完成冠状动脉CT扫描需要,在严格监测情况下,总注射量甚至可降低至35 ml,不过该方法检查前需要依据患者心功能情况,严格计算用量,否则容易扫描失败。
本研究的不足:①样本总量较少,后续将继续大样本研究验证此研究结论。②由于需要保证检查的成功率,使用45 ml的总注射容量,理论上35 ml(4.5 ml/s)即可满足成像要求,但为保证检查的成功率,仍选择45 ml的注射总量。③对CDK患者碘对比剂引起的肾脏功能异常以血清肌酐清除率的下降百分比表示,后续研究需严格测定血清肌酐浓度,提高评估的准确性。④本组数据未能区分碘对比剂对原发性肾小球肾炎和糖尿病、高血压相关慢性肾病各自的影像,后续将继续深入该方面的研究。
综上,“三低”冠状动脉CTA扫描方案用于CKD伴冠状动脉疾病患者是可行的,辐射剂量和碘的总摄入量大幅度降低,大幅度降低了肾脏功能的损伤,冠状动脉图像质量仍能满足诊断。该检查方案同样适用于非CKD患者的冠状动脉CTA检查,也有利于促进其他部位血管的CTA检查方案的改进。
志谢 本研究获得宁波市科技惠民项目(201701CX-D02160)支持
利益冲突 全体作者无利益冲突,排名无争议,未因进行该研究而接受任何不正当的职务或财务利益,所写内容均中立客观,不存在任何利益冲突
作者贡献声明 施优波负责材料搜集、论文撰写、数据分析;孙玲麟负责影像诊断、图像质量评价;李强负责研究设计、论文指导和投稿;王涛负责患者筛选、扫描质量控制、图像分析
临床试验注册号:ChiCTR-OOC-17013327
Clinical trial registration: ChiCTR-OOC-17013327
[1] |
Nijveldt R, Pflederer T, Achenbach S. Coronary CT angiography in the elderly[J]. Neth Heart J, 2014, 22(3): 124-125. DOI:10.1007/s12471-013-0445-4 |
[2] |
中华医学会放射学分会心胸学组, 《中华放射学杂志》心脏冠状动脉多排CT临床应用指南写作专家组. 心脏冠状动脉CT血管成像技术规范化应用中国指南[J]. 中华放射学杂志, 2017, 51(10): 732-743. Cardiothoracic group of Radiology Branch of Chinese Medical Association, writing expert group for clinical application guideline of cardiac coronary multi-slice CT in |
[3] |
Maccariello E. Contrast induced nephropathy[J]. J Bras Nefrol, 2016, 38(4): 388-389. DOI:10.5935/0101-2800.20160062 |
[4] |
Jorgensen AL. Contrast-induced nephropathy:pathophysiology and preventive strategies[J]. Crit Care Nurse, 2013, 33(1): 37-46. DOI:10.4037/ccn2013680 |
[5] |
Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease[J]. Lancet, 2017, 389(10075): 1238-1252. DOI:10.1016/S0140-6736(16)32064-5 |
[6] |
上海慢性肾脏病早发现及规范化诊治与示范项目专家组. 慢性肾脏病筛查诊断及防治指[J]. 中国实用内科杂志, 2017, 37(1): 28-34. Expert Group on Early Detection Diagnosis and Trea. Guideline for screening, diagnosis, prevention and treatment of chronic kidney disease[J]. Chin J Prac Intern Med, 2017, 37(1): 28-34. DOI:10.19538/j.nk2017010108 |
[7] |
Smettei OA, Sayed S, M Al Habib A, et al. Ultra-fast, low dose high-pitch (FLASH) versus prospectively-gated coronary computed tomography angiography:comparison of image quality and patient radiation exposure[J]. J Saudi Heart Assoc, 2018, 30(3): 165-171. DOI:10.1016/j.jsha.2017.11.001 |
[8] |
Bogaard K, van der Zant FM, Knol RJ, et al. High-pitch prospective ECG-triggered helical coronary computed tomography angiography in clinical practice:image quality and radiation dose[J]. Int J Cardiovasc Imaging, 2015, 31(1): 125-133. DOI:10.1007/s10554-014-0515-8 |
[9] |
Wanner C, Ketteler M. Chronic kidney disease——update 2015[J]. Dtsch Med Wochenschr, 2015, 140(16): 1216-1218. DOI:10.1055/s-0041-103753 |
[10] |
Ellam T, Twohig H, Khwaja A. Chronic kidney disease in elderly people:disease or disease label?[J]. BMJ, 2016, 352: h6559. DOI:10.1136/bmj.h6559 |
[11] |
Stacul F, van der Molen AJ, Reimer P, et al. Contrast induced nephropathy:updated ESUR Contrast Media Safety Committee guidelines[J]. Eur Radiol, 2011, 21(12): 2527-2541. DOI:10.1007/s00330-011-2225-0 |
[12] |
Meinel FG, De Cecco CN, Schoepf UJ, et al. Contrast-induced acute kidney injury:definition, epidemiology, and outcome[J]. Biomed Res Int, 2014, 2014: 859328. DOI:10.1155/2014/859328 |
[13] |
李强, 汪玲, 俞明明, 等. 碘对比剂对CT检查辐射生物学效应的影响[J]. 中华放射医学与防护杂志, 2017, 37(11): 816-820. Li Q, Wang L, Yu MM, et al. Effect of iodine contrast agent on biological responses of CT examination[J]. Chin J Radiol Med Prot, 2017, 37(11): 816-820. DOI:10.3760/cma.j.issn.0254-5098.2017.11.003 |
[14] |
Ferreira RF, Souza DR, Souza AS. Factors that induce DNA damage involving histone H2AX phosphorylation[J]. Radiology, 2015, 277(1): 307-308. DOI:10.1148/radiol.2015150818 |
[15] |
汤振华. 迭代重建算法在双源CT三低方案冠状动脉血管成像中的应用价值[J]. 中华放射医学与防护杂志, 2017, 37(3): 231-236. Tang ZH. The application value of sinogram affirmed iterative reconstruction (SAFIRE) algorithm in the coronary computed tomography angiography(CCTA) with the tri-low scheme of dual source CT[J]. Chin J Radiol Med Prot, 2017, 37(3): 231-236. DOI:10.3760/cma.j.issn.0254-5098.2017.03.014 |
[16] |
Tziomalos K, Georgaraki M, Bouziana SD, et al. Impaired kidney function evaluated with the chronic kidney disease epidemiology collaboration (CKD-EPI) equation is associated with more severe acute ischemic stroke[J]. Vasc Med, 2017, 22(5): 432-434. DOI:10.1177/1358863X17720865 |
[17] |
Hossain MA, Costanzo E, Cosentino J, et al. Contrast-induced nephropathy:pathophysiology, risk factors, and prevention[J]. Saudi J Kidney Dis Transpl, 2018, 29(1): 1-9. DOI:10.4103/1319-2442.225199 |
[18] |
刘远辉, 谭宁, 刘勇, 等. 高尿酸血症与慢性肾脏疾病患者经皮冠状动脉介入治疗后对比剂肾病的相关性[J]. 中华心血管病杂志, 2013, 41(9): 740-743. Liu YH, Tan N, Liu Y, et al. The relationship between hyperuricemia and contrast-induced nephropathy in patients with chronic kidney disease undergoing percutaneous coronary intervention[J]. Chin J Cardiol, 2013, 41(9): 740-743. DOI:10.3760/cma.j.issn.0253-3758.2013.09.004 |
[19] |
Prazeres C, Magalhães TA, de Castro Carneiro AC, et al. Image quality and radiation exposure comparison of a double high-pitch acquisition for coronary computed tomography angiography versus standard retrospective spiral acquisition in patients with atrial fibrillation[J]. J Comput Assist Tomogr, 2018, 42(1): 45-53. DOI:10.1097/RCT.0000000000000612 |
[20] |
Mehran R, Nikolsky E. Contrast-induced nephropathy:definition, epidemiology, and patients at risk[J]. Kidney Int Suppl, 2006(100): S11-15. DOI:10.1038/sj.ki.5000368 |