中华放射医学与防护杂志  2018, Vol. 38 Issue (12): 899-906   PDF    
miR-885-3p靶向AKT1对结直肠癌细胞HT-29放射敏感性的影响
李全营1 , 吴大鹏2 , 顾浩3 , 贺志宽1 , 汪洋1 , 葛政1 , 秦长江1 , 王伟4     
1. 475000 开封, 河南大学淮河医院普通外科;
2. 475000 开封, 河南大学淮河医院放疗科;
3. 450000 郑州大学第一附属医院放疗科;
4. 450045 郑州, 河南省人民医院放疗科
[摘要] 目的 探究miR-885-3p对结直肠癌细胞HT-29放射敏感性的影响以及作用机制。方法 荧光定量PCR检测经不同剂量(0、2、4、6、8 Gy)X射线照射后HT-29细胞中miR-885-3p的表达量;建立过表达miR-885-3p细胞株,功能试验探讨其对HT-29细胞放射敏感性的影响;生物信息学预测miR-885-3p下游调控的靶基因,双荧光素酶报告基因法进一步验证;上调和下调miR-885-3p表达量探讨miR-885-3p与靶基因丝苏氨酸蛋白激酶1(AKT1)表达量的调控关系;慢病毒转染敲减AKT1表达量,观察其对HT-29细胞放射敏感性的影响;共转染miR-885-3p模拟物,探讨过表达AKT1对miR-885-3p诱导的HT-29细胞放射敏感性的影响。结果 miR-885-3p在放射诱导的HT-29细胞中表达上调(F=46.64,P < 0.05);过表达miR-885-3p和敲减AKT1可通过抑制HT-29细胞存活、促进其凋亡,从而增强HT-29细胞放射敏感性(t=12.33、12.95,P < 0.05),放射增敏比(SER)分别为1.602和1.946;抑制miR-885-3p可通过促进HT-29细胞存活、抑制其凋亡从而促进HT-29细胞放射抵抗(t=11.94,P < 0.05),SER为0.839;AKT1是miR-885-3p下游靶基因;过表达AKT1反转miR-885-3p增强HT-29放射敏感性的作用,SER为0.680。结论 miR-885-3p通过直接靶向AKT1增加结直肠癌HT-29细胞放射敏感性,为提高临床结直肠癌放疗敏感性提供一个靶点。
[关键词] 结直肠癌     miR-885-3p     放疗敏感性     AKT1    
miR-885-3p regulates radiosensitivity of colorectal cancer cell HT-29 by targeting AKT1
Li Quanying1, Wu Dapeng2, Gu Hao3, He Zhikuan1, Wang Yang1, Ge Zheng1, Qin Changjiang1, Wang Wei4     
1. Department of General surgery, Huaihe Hospital of Henan University, Kaifeng 475000, China;
2. Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, China;
3. Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China;
4. Department of Radiotherapy, Henan Provincial People's Hospital, Zhengzhou 450000, China
Fund programs: Henan Medical Science and Technology Project (201601029)
Corresponding author: Qin Changjinag, Email:329908302@qq.com
[Abstract] Objective To investigate the effect and mechanism of miR-885-3p on the radiosensitivity of colorectal cancer cell HT-29. Methods The expression of miR-885-3p in HT-29 cells irradiated with different doses (0, 2, 4, 6, 8 Gy) of X-rays was detected by qPCR. The effect of miR-885-3p in modulating cell radiosensitivity was assessed in HT-29 cells with miR-885-3p overexpression. Bioinformatics prediction and dual luciferase reporter gene assay were employed to identify the direct target gene of miR-885-3p. Relationship between miR-885-3p and target gene tyrosine kinase 1 (AKT1) was investigated via regulation of miR-885-3p expression. The effect of AKT1 on radiosensitivity in HT-29 cells was evaluated through knockdown AKT1. The effect of AKT1 on miR-885-3p-induced radiosensitivity was detected by co-transferring miR-885-3p and AKT1 gene into HT-29 cells. Results miR-885-3p expression was up-regulated in radiation-induced HT-29 cells (F=46.64, P < 0.05). Over-expression of miR-885-3p and knockdown of AKT1 enhanced cell radiosensitization by inhibiting survival and promoting apoptosis (t=12.33, 12.95, P < 0.05) with SER of 1.602 and 1.946, respectively. Inhibition of miR-885-3p promoted radioresistance by increasing cell survival and inhibiting apoptosis (t=11.94, P < 0.05) with a SER of 0.839. AKT1 is a target gene downstream of miR-885-3p, overexpression of AKT1 reversed the effect of miR-885-3p on cell radiosensitivity with a SER of 0.680. Conclusions miR-885-3p can enhance the radiosensitivity of colorectal cancer HT-29 cells by directly targeting AKT1, which provides a target for improving the radiosensitivity of clinical colorectal cancer.
[Key words] Colorectal cancer     miR-885-3p     Radiosensitivity     AKT1    

结直肠癌是常见的恶性肿瘤,手术切除是临床治疗结肠直癌的主要方式[1-2]。目前临床上为提高结直肠癌患者的5年生存率和局部控制率,经常辅以放、化疗[3-4]。放射治疗过程中,放射敏感性降低是影响治疗效果的主要原因,因此,探究如何提高肿瘤细胞的放射敏感性具有重要意义。有研究表明,miRNA能增加或降低肿瘤细胞的放射敏感性[5-7]。miR-885-3p在多种恶性肿瘤中异常表达,与恶性肿瘤的形成密切相关,如非小细胞肺癌[8]、结肠癌[9]等。但关于miR-885-3p对肿瘤细胞放射敏感性的相关研究较少。本研究探讨miR-885-3p在放射诱导的结直肠癌HT-29细胞中的表达量及其对细胞放射敏感性的影响,并进一步阐明其发挥作用的分子机制,为提高结直肠癌的放射敏感性提供潜在靶点。

材料与方法

1.实验主要材料:HT-29细胞购自中国科学院上海细胞库,DMEM培养基、胎牛血清、青-链霉素购自美国Hyclone公司,Lipofectamine 2000购自美国赛默飞世尔有限公司,miR-885-3p模拟物、anti-miR-885-3p、PGCSIL-siAKT1-GFP vector购自广州锐博生物有限公司,聚凝胺购自北京索莱宝科技有限公司,miRNA提取试剂盒购自上海Qiagen公司,反转录试剂盒、荧光定量PCR检测试剂盒购自美国应用生物系统公司,RIPA裂解液、凋亡试剂盒购自上海碧云天生物有限公司,丝苏氨酸蛋白激酶1(serine-threonine kinase1, AKT1)3′-UTR野生型双荧光素酶报告载体购自美国Sigma公司,活化的含半胱氨酸的天冬氨酸蛋白水解酶3(cleaved cysteinyl aspartate specific proteinase 3, Cleaved Caspase-3)抗体、B细胞淋巴瘤/白血病-2(B cell lymphoma/lewkmia-2, Bcl-2)抗体、AKT1抗体购自美国Cellular Signaling Technology公司,辣根过氧化物酶标记二抗购自武汉博士德生物有限公司。

2.细胞的培养:HT-29细胞培养于含10%胎牛血清DMEM培养基,并加入1 000 U/ml的青-链霉素,放入37℃、5%CO2培养箱中,待细胞浓度大于80%,加入胰酶消化、传代。

3.细胞克隆实验:取转染后细胞,分别用0、2、4、6、8 Gy剂量的X射线照射细胞,当细胞培养板中出现明显的细胞克隆,弃去培养液,甲醇固定30 min,结晶紫染色30 min,干燥,光学显微镜下观察大于50的细胞克隆数,计算克隆形成率。利用GraphPad Prism5软件进行单击多靶模型拟合存活曲线,计算放射生物学参数平均致死量(D0)、准闭剂量(Dq)、外推值(N),计算放射增敏比(SER)。克隆形成率(PE, %)=克隆数/接种细胞数×100%,存活分数(SF)=受照射细胞PE/对照细胞PE

4.荧光定量PCR(qPCR)检测miR-885-3p表达量:根据miRNA提取试剂盒说明书,提取细胞中总miRNA,使用反转录试剂盒将所提取的miRNA合成cDNA。以cDNA为模板,U6为参照,采用荧光定量PCR检测试剂盒进行qPCR反应。反应条件为95℃ 2 min,95℃ 15 s,60℃ 30 s,72℃ 8 min,40个循环。miR-885-3p上游引物为5′ CGCGGTATGGCACTGGTAGA 3′,下游引物为5′ AGTGCAGGGTC CGAGGTATTC 3′。实验重复3次,采用罗氏LC480软件计算Ct值,以2-ΔΔCt法计算miR-885-3p的相对表达量。

5.细胞的转染:根据Lipofectamine 2000试剂说明书将表达miR-NC、miR-885-3p、anti-miR-NC、anti-miR-885-3p、Scrambled、shAKT1和AKT1及其对照的慢病毒载体转入293T细胞进行慢病毒包装。HT-29细胞常规培养于DMEM培养基中,稳定传代后进行转染。转染前24 h,将细胞调整为1×105/ml,加入6孔板中,待细胞密度大于30%开始转染。在慢病毒感染过程中,取适量上述包装的慢病毒与500 μl DMEM培养基混合均匀,加入5 μg/ml聚凝胺,室温孵育30 min,置于6孔板中感染细胞并继续培养,12 h后更换为完全培养基,于37℃、5%CO2培养箱培养,用于后续实验。根据感染慢病毒不同,分别记为miR-NC组、miR-885-3p组、anti-miR-NC组、anti-miR-885-3p组、Scrambled组、shAKT1组。取miR-NC组、miR-885-3p组、anti-miR-NC组、anti-miR-885-3p组、Scrambled组、shAKT1组细胞,分别接受4 Gy剂量射线照射后,记为miR-NC+照射组、miR-885-3p+照射组、anti-miR-NC+照射组、anti-miR-885-3p+照射组、Scrambled+照射组、shAKT1+照射组。另取miR-885-3p组细胞分别感染过表达对照和AKT1的慢病毒,记为miR-885-3p+对照组和miR-885-3p+AKT1组。

6.细胞凋亡实验:收集转染后细胞,根据照射条件:源靶距(SSD)为100 cm,照射野10 cm×10 cm,照射剂量4 Gy,剂量率5 Gy/min,射野覆盖全细胞培养板。根据凋亡试剂盒所示,检测细胞的凋亡率。

7.蛋白质印迹法(Western blot):收集处理后24 h的细胞,吸取10 μl放射免疫沉淀法(radio-immunoprecipitation assay, RIPA)裂解液,37℃孵育10 min,提取蛋白并进行浓度测定。将适量上样缓冲液与蛋白样品混合均匀,沸水变性10 min;吸取50 μg总蛋白进行10%的十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE),然后转移至聚偏氟乙烯(PVDF)膜中,用5%的脱脂奶粉溶液封闭1 h;加入相应一抗,4℃孵育过夜,加入二抗,室温孵育2 h,曝光、拍照,分析蛋白质相对表达量。

8.双荧光素酶报告基因:通过TargetScan(http://www.targetscan.org/vert_71/)生物信息学预测软件预测miR-885-3p与AKT1的3′-端非编码区域(3′-UTR)碱基是否存在互补现象。分别构建AKT1 3′-UTR野生型双荧光素酶报告载体,并分别共转染miR-885-3p模拟物或anti-miR-885-3p,37℃、5%CO2培养箱中培养48 h,收集细胞,测定双荧光素酶的活性。

9.统计学处理:采用SPSS 22.0软件进行统计处理。所有计量数据经正态性检验均符合正态分布,结果以x±s表示。两组间数据的比较采用独立样本t检验,多组数据间的比较经方差齐性检验采用单因素方差分析,组间多重比较使用SNK-q检验。P < 0.05为差异具有统计学意义。

结果

1.放射诱导HT-29细胞中miR-885-3p表达增加:qPCR检测经不同剂量(0、2、4、6、8 Gy)照射后结直肠癌HT-29细胞中miR-885-3p表达增加,其表达量分别为1.00±0.06、1.87±0.19、2.95±0.30、3.25±0.33和3.54±0.35,2、4、6、8 Gy与0 Gy比较,差异均具有统计学意义(F=46.64,P < 0.05);与2 Gy比较,4、6、8 Gy明显诱导细胞中miR-885-3p表达增加,差异具有统计学意义(F=17.85,P < 0.05);与4 Gy比较,6和8 Gy照射后细胞中miR-885-3p表达差异无统计学意义(P>0.05),故选择4 Gy进行后续实验研究。

2. miR-885-3p增强HT-29细胞放射敏感性:结果见图 1表 1。qPCR检测结果显示,转染miR-885-3p模拟物后HT-29细胞中miR-885-3p的表达量明显升高,差异具有统计学意义(t=16.11,P < 0.05);上调miR-885-3p可抑制HT-29细胞的存活分数,促进细胞凋亡,与miR-NC比较差异有统计学意义(t=12.33, P < 0.05),见图 1AB表 1,转染miR-885-3p增加了Cleaved Caspase-3蛋白水平,降低了Bcl-2蛋白表达量,与转染miR-NC组比较, 差异具有统计学意义(F=56.27、54.44,P < 0.05),见图 1C表 2

图 1 miR-885-3p对照射后HT-29细胞存活和凋亡的影响A.单击多靶模型拟合细胞存活曲线;B.流式细胞仪检测细胞的凋亡率;C.Western blot检测细胞中Cleaved Caspase-3和Bcl-2蛋白水平 注:1.miR-NC组;2.miR-885-3p组;3.miR-NC+照射组;4.miR-885-3p+照射组 Figure 1 The effect of miR-885-3p on survival and apoptosis of HT-29 cells after radiation A. Cell survival curve fitted by the single-hit multi-target model; B. Cell apoptosis rate detected by flow cytometry; C. Protein expressions of Cleaved Caspase-3 and Bcl-2 in the cells detected by Western blot

表 1 转染miR-885-3p对HT-29细胞单击多靶模型参数、miR-885-3p表达及凋亡率的影响(x±s) Table 1 Effect of transfecting miR-885-3p on the parameters of single-hit multi-target model, the expression of miR-885-3p and apoptosis in HT-29 cells(x±s)

表 2 转染miR-885-3p后HT-29细胞中凋亡相关蛋白的表达(x±s) Table 2 The expressions of apoptosis-related proteins in HT-29 cells after transfecting miR-885-3p(x±s)

3. anti-miR-885-3p促进HT-29细胞放射抵抗:qPCR检测结果显示,转染anti-miR-885-3p模拟物后HT-29细胞中miR-885-3p的表达量明显降低,差异具有统计学意义(t=11.43,P < 0.05),见表 3;anti-miR-885-3p可促进HT-29细胞的存活,抑制细胞凋亡,与anti-miR-NC比较,差异有统计学意义(t=11.94,P < 0.05),见图 2AB表 3,转染anti-miR-885-3p降低了Cleaved Caspase-3蛋白水平,增加了Bcl-2蛋白表达量,与转染anti-miR-NC组比较,差异具有统计学意义(F=68.45、61.580,P < 0.05),见图 2C表 4

图 2 anti-miR-885-3p对照射后HT-29细胞存活和凋亡的影响A.单击多靶模型拟合细胞存活曲线;B.流式细胞仪检测细胞的凋亡率;C.Western blot检测细胞中Cleaved Caspase-3和Bcl-2蛋白水平 注:1. anti-miR-NC组;2. anti-miR-885-3p组;3. anti-miR-NC+照射组;4. anti-miR-885-3p+照射组;GAPDH作为内参 Figure 2 The effect of anti-miR-885-3p on survival and apoptosis of HT-29 cells after radiation A. Cell survival curve fitted by the single-hit multi-target model; B. Cell apoptosis rate detected by flow cytometry; C. Protein expressions of Cleaved Caspase-3 and Bcl-2 in the cells detected by Western blot

表 3 转染anti-miR-885-3p对HT-29细胞单击多靶模型参数、miR-885-3p表达及凋亡的影响(x±s) Table 3 Effect of transfecting anti-miR-885-3p on the parameters of single-hit multi-target model, the expression of miR-885-3p and apoptosis in HT-29 cells(x±s)

表 4 转染anti-miR-885-3p后各组HT-29细胞中相关蛋白的表达(x±s) Table 4 The expressions of apoptosis-related proteins in HT-29 cells after transfecting anti-miR-885-3p(x±s)

4. AKT1是miR-885-3p的靶基因:TargetScan数据库预测显示miR-885-3p与AKT1 3′UTR部分碱基互补配对,推测miR-885-3p可能对AKT1有一定的调控作用(图 3A)。双荧光素酶报告基因检测结果显示,当共转染miR-885-3p模拟物或anti-miR-885-3p进入293T细胞后,野生型AKT1 3′UTR 3′UTR报告基因的荧光素酶相对活性明显受到抑制或促进,差异具有统计学意义(F=76.05,P < 0.05),见表 5;Western blot结果显示,转染miR-885-3p模拟物或anti-miR-885-3p对AKT1蛋白水平具有明显的调控作用,差异具有统计学意义(F=44.87,P < 0.05),见图 3B表 5

图 3 miR-885-3p对HT-29细胞中AKT1的靶向调控作用A. TargetScan数据库预测miR-885-3p对AKT1的调控关系;B. Western blot检测上调或下调miR-885-3p对AKT1蛋白表达的影响 注:1. miR-NC组;2. miR-885-3p组;3. anti-miR-NC组;4. anti-miR-885-3p组 Figure 3 The targeting regulation effect of miR-885-3p on AKT1 in HT-29 cells A. the regulation between miR-885-3p and AKT1 was predicted by TargetScan database; B. the effect of up- or down-regulating miR-885-3p on AKT1 protein expression was measured by Western blot

表 5 miR-885-3p或anti-miR-885-3p对野生型报告质粒荧光素酶相对活性及细胞中AKT1蛋白表达的影响(x±s) Table 5 Effects of miR-885-3p or anti-miR-885-3p on the relative luciferase activity of wild-type reporter plasmids and the expression of AKT1 protein in cells(x±s)

5.敲减AKT1增强HT-29的放射敏感性:Western blot检测结果显示慢病毒转染后细胞中AKT1的表达量明显降低(t=13.630,P < 0.05)(图 4A表 6);敲减AKT1的表达量抑制HT-29细胞的存活分数,促进细胞的凋亡(t=12.95,P < 0.05),升高Cleaved Caspase-3蛋白水平(F=50.39,P < 0.05),降低Bcl-2蛋白表达量(F=45.08,P < 0.05),差异具有统计学意义(图 4B图 4C表 6表 7)。

图 4 敲减AKT1对受照射HT-29细胞存活的影响A. Western blot检测慢病毒转染后细胞中AKT1的表达量;B.单击多靶模型拟合细胞存活曲线;C. Western blot检测细胞中Cleaved Caspase-3和Bcl-2蛋白水平 注:1.Scrambled组;2.shAKT1组;3.Scrambled+照射组;4.shAKT1+照射组 Figure 4 Effect of knockdown of AKT1 on the survival of HT-29 cells after radiation A. The expression of AKT1 in lentivirus transfected cells was detected by Western blot; B. Cell survival curve fitted by the single-hit multi-target model; C. The protein levels of Cleaved Caspase-3 and Bcl-2 in cells were measured by Western blot

表 6 敲减AKT1对HT-29细胞单击多靶模型参数、AKT1表达及细胞凋亡的影响(x±s) Table 6 Effect of knockdown of AKT1 on the parameters of single-hit multi-target model, the expression of AKT1 and cell apoptosis in HT-29 cells(x±s)

表 7 敲减AKT1后各组HT-29细胞中相关蛋白的表达(x±s) Table 7 The expressions of apoptosis-related proteins in HT-29 cells after knocking down AKT1(x±s)

6.过表达AKT1逆转了miR-885-3p增强HT-29放射敏感性的作用:与miR-885-3p+Control相比,AKT1和miR-885-3p模拟物共转染入HT-29细胞显著增加细胞的存活分数,降低细胞的凋亡率,促进AKT1、Bcl-2蛋白表达,降低Cleaved Caspase 3蛋白水平,与转染前比较,差异均具有统计学意义(t=7.669、12.180、7.746、9.317,P < 0.05),见图 5表 8

图 5 过表达AKT1逆转miR-885-3p对HT-29细胞存活、凋亡及凋亡蛋白表达的影响A.单击多靶模型拟合细胞存活曲线;B.Western blot检测细胞中AKT1、Cleaved Caspase-3、Bcl-2蛋白水平 注:1. miR-NC组;2. miR-885-3p组;3. miR-885-3p+对照组;4. miR-885-3p+AKT1组 Figure 5 Overexpression of AKT1 reversed the effects of miR-885-3p on cell survival, apoptosis and the expressions of apoptotic proteins in HT-29 cells A. Cell survival curve fitted by the single-hit multi-target model; B. The protein levels of AKT1, Cleaved Caspase-3 and Bcl-2 in cells were detected by Western blot

表 8 过表达AKT1逆转miR-885-3p对HT-29细胞中单击多靶模型参数、凋亡及凋亡蛋白表达的影响(x±s) Table 8 Overexpression of AKT1 reverses the effects of miR-885-3p on the multipile target model parameters, apoptosis and expression of apoptotic protein in HT-29 cells(x±s)

讨论

结直肠癌是最常见的恶性肿瘤,其发病率和死亡率位居全球恶性肿瘤的前列。目前对于结直肠癌的发病机制尚不完全清楚,结直肠癌的诊断和治疗仍是临床研究面临的挑战之一。尽管手术和放疗的治疗方法得到了巨大的发展,明显提高了结直肠癌患者的长期生存率和预后,但肿瘤细胞对放疗抵抗已成为临床进一步提高放疗效果的巨大挑战。放疗抵抗包括细胞中DNA的损伤、修复以及某些基因或者信号通路的异常激活,是一个复杂的生物学过程[10-11]。放疗抵抗是导致结直肠癌患者死亡的主要原因[12]。因此,深入研究结直肠癌放射敏感性的机制,寻找与其密切相关的基因,才有望逆转放疗抵抗并进一步提高患者预后。

miRNA是一类非编码单链小分子RNA,在细胞的生长、凋亡等生物学过程中发挥重要作用[13-15]。越来越多的研究证实,miRNA不仅在肿瘤细胞的侵袭、迁移等恶性生物学过程起重要作用,而且与肿瘤细胞的放射敏感性密切相关。目前已发现,miR-124[16]、miR-133a[17]、miR-451a[18]等多种miRNA能够调控结直肠癌细胞的增殖、凋亡等生物学过程,从而调节细胞的放射敏感性。然而miR-885-3p对结肠直癌细胞放射敏感性的相关影响暂不明确。在本研究中发现,在不同剂量(0、2、4、6、8 Gy)放射诱导的HT-29细胞中,miR-885-3p的表达量逐渐增加,差异具有统计学意义,其中4 Gy剂量增加幅度较高。过表达miR-885-3p可以抑制HT-29细胞增殖、诱导其凋亡,从而增强结直肠癌细胞的放射敏感性。

近年来的研究表明,磷酸化的AKT能够激活下游多种作用底物参与肿瘤细胞的增殖、凋亡、侵袭、迁移过程,提高细胞的缺氧耐受性,增加机体血管的生成,促进细胞的放射抗性和化疗药物耐受性[19-22]。AKT在多种肿瘤组织中异常表达和磷酸化。AKT1是AKT的重要亚型之一,有研究发现,AKT1在结直肠癌中的表达量显著增加,在胃癌中也发现AKT1过度表达和活化,并在胃癌细胞的放射敏感性中发挥重要作用[23-24]。本研究通过生物信息学预测以及双荧光素酶报告基因实验表明AKT1是miR-885-3p功能性靶基因;上调和下调miR-885-3p可显著调节结直肠癌细胞中AKT1蛋白的表达量,进一步证实AKT1是miR-885-3p的直接靶基因;敲减AKT1抑制HT-29细胞的增殖、促进其凋亡,从而增强HT-29的放射敏感性;过表达AKT1逆转了miR-885-3p抑制放射诱导的细胞增殖、促进细胞凋亡作用,表明AKT1是miR-885-3p调节结直肠癌细胞放射敏感性的功能性靶基因。

综上所述,本实验结果发现,miR-885-3p通过调控AKT1增强结直肠癌HT-29细胞的放射敏感性,为临床提高结直肠癌放射敏感性提供了一个重要的实验依据和靶点。

利益冲突 全体作者无利益冲突,排名无争议,未因进行该研究而接受任何不正当的职务和财务利益
作者贡献声明 李全营、吴大鹏设计研究方案、收集数据后统计并起草论文;顾浩、贺志宽、汪洋、葛政协助完成实验;秦长江、王伟指导、监督实验进行,修改论文
参考文献
[1]
Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(3): 177-193. DOI:10.3322/caac.21395
[2]
Cohen R, Svrcek M, Duval A, et al. Immune checkpoint inhibitors for patients with colorectal cancer:mismatch repair deficiency and perspectives[J]. Colorectal Cancer, 2017, 6(1): 23-31. DOI:10.2217/crc-2017-0004
[3]
刘娟. 同步化疗与序贯化疗对直肠癌术后患者局部控制率和生存率的作用[J]. 医药前沿, 2018, 8(20): 227-228.
Liu J. Effects of synchronous chemotherapy and sequential chemotherapy on local control rate and survival rate of postoperative rectal cancer patients[J]. J Front Med, 2018, 8(20): 227-228. DOI:10.3969/j.issn.2095-1752.2018.20.195
[4]
王宏伟, 邢宝才. 结直肠癌肝转移术前药物治疗进展[J]. 中国实用外科杂志, 2016, 36(4): 447-450.
Wang HW, Xing BC. Advances in preoperative drug therapy for hepatic metastasis of colorectal cancer[J]. Chin J Practical Surg, 2016, 36(4): 447-450. DOI:10.7504/cjps.issn.1005-2208.2016.04.21
[5]
Chen X, Xu Y, Liao X, et al. Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer[J]. Tumour Biol, 2016, 37(9): 11927-11936. DOI:10.1007/s13277-016-5052-8
[6]
Hao C, Xu X, Ma J, et al. MicroRNA-124 regulates the radiosensitivity of non-small cell lung cancer cells by targeting TXNRD1[J]. Oncol Lett, 2017, 13(4): 2071-2078. DOI:10.3892/ol.2017.5701
[7]
Hou W, Song L, Zhao Y, et al. Inhibition of Beclin-1-mediated autophagy by microrna-17-5p enhanced the radiosensitivity of glioma cells[J]. Oncol Res, 2017, 25(1): 43-53. DOI:10.3727/096504016X14719078133285
[8]
Shin S, Cha HJ, Lee EM, et al. Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells[J]. Int J Oncol, 2009, 35(1): 81-86. DOI:10.3892/ijo_00000315
[9]
Xiao F, Qiu H, Cui H, et al. MicroRNA-885-3p inhibits the growth of HT-29 colon cancer cell xenografts by disrupting angiogenesis via targeting BMPR1A and blocking BMP/Smad/Id1 signaling[J]. Oncogene, 2015, 34(15): 1968-1978. DOI:10.1038/onc.2014.134
[10]
Mueller AK, Lindner K, Hummel R, et al. MicroRNAs and their impact on radiotherapy for cancer[J]. Radiat Res, 2016, 185(6): 668-677. DOI:10.1667/RR14370.1
[11]
Pajic M, Froio D, Daly S, et al. miR-139-5p modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense[J]. Cancer Res, 2018, 78(2): 501-515. DOI:10.1158/0008-5472.CAN-16-3105
[12]
Yang P, Yang Y, An W, et al. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway[J]. J Gastroenterol Hepatol, 2017, 32(4): 837-845. DOI:10.1111/jgh.13606
[13]
Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development[J]. Biochim Biophys Acta, 2016, 1859(1): 169-176. DOI:10.1016/j.bbagrm.2015.06.015
[14]
Ma ZL, Hou PP, Li YL, et al. MicroRNA-34a inhibits the proliferation and promotes the apoptosis of non-small cell lung cancer H1299 cell line by targeting TGFβR2[J]. Tumour Biol, 2015, 36(4): 2481-2490. DOI:10.1007/s13277-014-2861-5
[15]
Reddy KB. MicroRNA (miRNA) in cancer[J]. Cancer Cell Int, 2015, 15: 38. DOI:10.1186/s12935-015-0185-1
[16]
Lin SM, Xia Q, Zhang YQ, et al. miR-124 regulates radiosensitivity of colorectal cancer cells by targeting PRRX1[J]. J South Med Univ, 2016, 36(8): 1110-1116. DOI:10.3969/j.issn.1673-4254.2016.08.15
[17]
Yang QS, Jiang LP, He CY, et al. Up-Regulation of MicroRNA-133a Inhibits the MEK/ERK signaling pathway to promote cell apoptosis and enhance radio-sensitivity by targeting EGFR in esophageal cancer in vivo and in vitro[J]. J Cell Biochem, 2017, 118(9): 2625-2634. DOI:10.1002/jcb.25829
[18]
Ruhl R, Rana S, Kelley K, et al. microRNA-451a regulates colorectal cancer proliferation in response to radiation[J]. BMC Cancer, 2018, 18(1): 517. DOI:10.1186/s12885-018-4370-1
[19]
Bao L, Liu F, Guo HB, et al. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway[J]. Tumour Biol, 2016, 37(8): 11365-11374. DOI:10.1007/s13277-016-5013-2
[20]
Umesalma S, Nagendraprabhu P, Sudhandiran G. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells[J]. Mol Cell Biochem, 2015, 399(1-2): 303-313. DOI:10.1007/s11010-014-2257-2
[21]
Leszczynska KB, Foskolou IP, Abraham AG, et al. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT[J]. J Clin Invest, 2015, 125(6): 2385-2398. DOI:10.1172/JCI80402
[22]
Tolcher AW, Patnaik A, Papadopoulos KP, et al. Phase I study of the MEK inhibitor trametinib in combination with the AKT inhibitor afuresertib in patients with solid tumors and multiple myeloma[J]. Cancer Chemother Pharmacol, 2015, 75(1): 183-189. DOI:10.1007/s00280-014-2615-5
[23]
许欣, 姚冬颖. 结直肠癌中Girdin和Akt1蛋白的表达及临床意义[J]. 河北医药, 2016, 42(15): 2259-2261, 2266.
Xu X, Yao DY. Expression and clinical significance of Girdin and Akt1 in colorectal carcinoma[J]. Hebei Med, 2016, 42(15): 2259-2261, 2266. DOI:10.3969/j.issn.1002-7386.2016.15.005
[24]
Sasaki T, Yamashita Y, Kuniyasu H. AKT plays a crucial role in gastric cancer[J]. Oncol Lett, 2015, 10(2): 607-611. DOI:10.3892/ol.2015.3260